School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo, 152-8550, Japan.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
Sci Rep. 2020 Feb 11;10(1):2351. doi: 10.1038/s41598-020-59172-3.
High pressure below 100 MPa interferes inter-molecular interactions without causing pressure denaturation of proteins. In Escherichia coli, the binding of the chemotaxis signaling protein CheY to the flagellar motor protein FliM induces reversal of the motor rotation. Using molecular dynamics (MD) simulations and parallel cascade selection MD (PaCS-MD), we show that high pressure increases the water density in the first hydration shell of CheY and considerably induces water penetration into the CheY-FliM interface. PaCS-MD enabled us to observe pressure-induced dissociation of the CheY-FliM complex at atomic resolution. Pressure dependence of binding free energy indicates that the increase of pressure from 0.1 to 100 MPa significantly weakens the binding. Using high-pressure microscopy, we observed that high hydrostatic pressure fixes the motor rotation to the counter-clockwise direction. In conclusion, the application of pressure enhances hydration of the proteins and weakens the binding of CheY to FliM, preventing reversal of the flagellar motor.
压力低于 100 MPa 不会引起蛋白质的压力变性,而是干扰分子间的相互作用。在大肠杆菌中,趋化信号蛋白 CheY 与鞭毛马达蛋白 FliM 的结合会诱导马达旋转方向的反转。使用分子动力学(MD)模拟和并行级联选择 MD(PaCS-MD),我们表明高压会增加 CheY 第一水合壳层中的水密度,并显著诱导水渗透到 CheY-FliM 界面中。PaCS-MD 使我们能够以原子分辨率观察到压力诱导的 CheY-FliM 复合物解离。结合自由能的压力依赖性表明,压力从 0.1 MPa 增加到 100 MPa 会显著削弱结合。使用高压显微镜,我们观察到高压会固定马达旋转到逆时针方向。总之,压力的施加增强了蛋白质的水合作用,并削弱了 CheY 与 FliM 的结合,从而阻止了鞭毛马达的反转。