Nishiyama Masayoshi
The HAKUBI Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
Biophys Chem. 2017 Dec;231:71-78. doi: 10.1016/j.bpc.2017.03.010. Epub 2017 Mar 30.
High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli.
高压显微镜是观察流体静压力对研究对象影响的强大技术之一。它可用于监测体外和体内分子机器结构和功能的压力诱导变化。本综述聚焦于通过高压显微镜测量分析的组装体和机器的动态特性。我们开发了一种高压显微镜,它在最佳成像和高达150兆帕的流体静压力稳定性方面都进行了优化。施加压力可改变微管细胞骨架的聚合和解聚过程,这表明微管蛋白分子之间的分子间相互作用受到了调节。一种新型运动测定法表明,高流体静压力会诱导大肠杆菌鞭毛马达逆时针(CCW)到顺时针(CW)的反转。当前技术可扩展用于研究复杂系统中的分子机器如何响应机械刺激。