Suppr超能文献

通过秩聚合改进微小RNA靶标的生物信息学预测

Improving Bioinformatics Prediction of microRNA Targets by Ranks Aggregation.

作者信息

Quillet Aurélien, Saad Chadi, Ferry Gaëtan, Anouar Youssef, Vergne Nicolas, Lecroq Thierry, Dubessy Christophe

机构信息

Normandie Univ, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Rouen, France.

Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, Laboratoire d'Informatique du Traitement de l'Information et des Systèmes, Rouen, France.

出版信息

Front Genet. 2020 Jan 28;10:1330. doi: 10.3389/fgene.2019.01330. eCollection 2019.

Abstract

microRNAs are noncoding RNAs which downregulate a large number of target mRNAs and modulate cell activity. Despite continued progress, bioinformatics prediction of microRNA targets remains a challenge since available software still suffer from a lack of accuracy and sensitivity. Moreover, these tools show fairly inconsistent results from one another. Thus, in an attempt to circumvent these difficulties, we aggregated all human results of four important prediction algorithms (miRanda, PITA, SVmicrO, and TargetScan) showing additional characteristics in order to rerank them into a single list. Instead of deciding which prediction tool to use, our method clearly helps biologists getting the best microRNA target predictions from all aggregated databases. The resulting database is freely available through a webtool called miRabel which can take either a list of miRNAs, genes, or signaling pathways as search inputs. Receiver operating characteristic curves and precision-recall curves analysis carried out using experimentally validated data and very large data sets show that miRabel significantly improves the prediction of miRNA targets compared to the four algorithms used separately. Moreover, using the same analytical methods, miRabel shows significantly better predictions than other popular algorithms such as MBSTAR, miRWalk, ExprTarget and miRMap. Interestingly, an F-score analysis revealed that miRabel also significantly improves the relevance of the top results. The aggregation of results from different databases is therefore a powerful and generalizable approach to many other species to improve miRNA target predictions. Thus, miRabel is an efficient tool to guide biologists in their search for miRNA targets and integrate them into a biological context.

摘要

微小RNA是非编码RNA,可下调大量靶标信使核糖核酸并调节细胞活性。尽管不断取得进展,但微小RNA靶标的生物信息学预测仍然是一项挑战,因为现有软件仍缺乏准确性和敏感性。此外,这些工具彼此之间的结果相当不一致。因此,为了克服这些困难,我们汇总了四种重要预测算法(miRanda、PITA、SVmicrO和TargetScan)的所有人类结果,并展示了其他特征,以便将它们重新排序为一个单一列表。我们的方法不是决定使用哪种预测工具,而是清楚地帮助生物学家从所有汇总数据库中获得最佳的微小RNA靶标预测。由此产生的数据库可通过一个名为miRabel的网络工具免费获取,该工具可以将微小RNA、基因或信号通路列表作为搜索输入。使用经过实验验证的数据和非常大的数据集进行的受试者工作特征曲线和精确召回率曲线分析表明,与单独使用的四种算法相比,miRabel显著提高了微小RNA靶标的预测能力。此外,使用相同的分析方法,miRabel的预测结果明显优于其他流行算法,如MBSTAR、miRWalk、ExprTarget和miRMap。有趣的是,F分数分析表明,miRabel也显著提高了顶级结果的相关性。因此,汇总来自不同数据库的结果是一种强大且可推广的方法,适用于许多其他物种,以改善微小RNA靶标的预测。因此,miRabel是一种有效的工具,可指导生物学家寻找微小RNA靶标并将它们整合到生物学背景中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fc/6997536/1e176489b539/fgene-10-01330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验