Suppr超能文献

一个 16-mRNA 标志物可优化 II 期和 III 期胃癌的无复发生存预测。

A 16-mRNA signature optimizes recurrence-free survival prediction of Stages II and III gastric cancer.

机构信息

Department of Medical Oncology, Zhongshan Hospital Fudan University, Shanghai, China.

出版信息

J Cell Physiol. 2020 Jul;235(7-8):5777-5786. doi: 10.1002/jcp.29511. Epub 2020 Feb 11.

Abstract

High-throughput messenger RNA (mRNA) analysis has become a powerful tool for exploring tumor recurrence or metastasis mechanisms. Here, we constructed a signature to predict the recurrence risk of Stages II and III gastric cancer (GC) patients. A least absolute shrinkage and selection operator method Cox regression model was utilized to construct the signature. Using this method, a 16-mRNA signature was identified to be associated with the relapse-free survival of Stages II and III GCs in training dataset GSE62254 (n = 194). Then this signature was validated in an independent Gene Expression Omnibus cohort GSE26253 (n = 297) and a dataset of The Cancer Genome Atlas (TCGA; n = 235). This classifier could successfully screen out the high-risk Stages II and III GCs in the training cohort (hazard ratio [HR] = 40.91; 95% confidence interval [CI] = 5.58-299.7; p < .0001). Analysis in two independent validation cohorts yielded consistent results (GSE26253: HR = 1.69, 95% CI = 1.17-2.43,; p = .0045; TCGA: HR = 2.01, 95% CI = 1.13-3.56, p = .0146). Cox regression analyses revealed that the risk score derived from this signature was an independent risk factor in Stages II and III GCs. Besides, a nomogram was constructed to serve clinical practice. Through gene set variation analysis, we found several gene sets associated with chemotherapeutic drug resistance and tumor metastasis significantly enriched in high-risk patients. In summary, this 16-mRNA signature can be used as a powerful tool for prognostic evaluation and help clinicians identify high-risk patients.

摘要

高通量信使 RNA (mRNA) 分析已成为探索肿瘤复发或转移机制的有力工具。在这里,我们构建了一个预测 II 期和 III 期胃癌 (GC) 患者复发风险的特征。使用最小绝对收缩和选择算子 Cox 回归模型构建了特征。利用该方法,在训练数据集 GSE62254(n=194)中确定了与 II 期和 III 期 GC 无复发生存相关的 16-mRNA 特征。然后,在独立的基因表达谱 GSE26253 数据集(n=297)和癌症基因组图谱(TCGA;n=235)中验证了该特征。该分类器可以成功筛选出训练队列中的高危 II 期和 III 期 GC(风险比 [HR] = 40.91;95%置信区间 [CI] = 5.58-299.7;p<0.0001)。在两个独立的验证队列中的分析结果一致(GSE26253:HR=1.69,95%CI=1.17-2.43,p=0.0045;TCGA:HR=2.01,95%CI=1.13-3.56,p=0.0146)。Cox 回归分析表明,该特征得出的风险评分是 II 期和 III 期 GC 的独立危险因素。此外,还构建了一个列线图用于临床实践。通过基因集变异分析,我们发现几个与化疗药物耐药和肿瘤转移相关的基因集在高危患者中显著富集。总之,这个 16-mRNA 特征可作为预后评估的有力工具,帮助临床医生识别高危患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验