Suppr超能文献

糖缀合物疫苗:关于载体和生产方法的一些观察。

Glycoconjugate vaccines: some observations on carrier and production methods.

机构信息

National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK.

Kulturhistorisk Museum, University of Oslo, Oslo, Norway.

出版信息

Biotechnol Genet Eng Rev. 2019 Oct;35(2):93-125. doi: 10.1080/02648725.2019.1703614. Epub 2020 Feb 12.

Abstract

Glycoconjugate vaccines use protein carriers to improve the immune response to polysaccharide antigens. The protein component allows the vaccine to interact with T cells, providing a stronger and longer-lasting immune response than a polysaccharide interacting with B cells alone. Whilst in theory the mere presence of a protein component in a vaccine should be sufficient to improve vaccine efficacy, the extent of improvement varies. In the present review, a comparison of the performances of vaccines developed with and without a protein carrier are presented. The usefulness of analytical tools for macromolecular integrity assays, in particular nuclear magnetic resonance, circular dichroism, analytical ultracentrifugation and SEC coupled to multi-angle light scattering (MALS) is indicated. Although we focus mainly on bacterial capsular polysaccharide-protein vaccines, some consideration is also given to research on experimental cancer vaccines using zwitterionic polysaccharides which, unusually for polysaccharides, are able to invoke T-cell responses and have been used in the development of potential all-polysaccharide-based cancer vaccines.A general trend of improved immunogenicity for glycoconjugate vaccines is described. Since the immunogenicity of a vaccine will also depend on carrier protein type and the way in which it has been linked to polysaccharide, the effects of different carrier proteins and production methods are also reviewed. We suggest that, in general, there is no single best carrier for use in glycoconjugate vaccines. This indicates that the choice of carrier protein is optimally made on a case-by-case basis, based on what generates the best immune response and can be produced safely in each individual case.: AUC: analytical ultracentrifugation; BSA: bovine serum albumin; CD: circular dichroism spectroscopy; CPS: capsular polysaccharide; CRM197: Cross Reactive Material 197; DT: diphtheria toxoid; Hib: type b; MALS: multi-angle light scattering; Men: ; MHC-II: major histocompatibility complex class II; NMR: nuclear magnetic resonance spectroscopy; OMP: outer membrane protein; PRP: polyribosyl ribitol phosphate; PSA: Polysaccharide A1; Sa: ; St.: ; SEC: size exclusion chromatography; Sta: ; TT: tetanus toxoid; ZPS: zwitterionic polysaccharide(s).

摘要

糖缀合物疫苗利用蛋白质载体来提高多糖抗原的免疫应答。蛋白质成分使疫苗能够与 T 细胞相互作用,提供比单独与 B 细胞相互作用的多糖更强、更持久的免疫应答。虽然理论上疫苗中仅存在蛋白质成分就足以提高疫苗效力,但改善的程度有所不同。在本综述中,比较了使用和不使用蛋白质载体开发的疫苗的性能。还指出了用于大分子完整性分析的分析工具的有用性,特别是核磁共振、圆二色性、分析超速离心和与多角度光散射 (MALS) 耦合的 SEC。虽然我们主要关注细菌荚膜多糖-蛋白质疫苗,但也考虑了使用两性离子多糖的实验性癌症疫苗的研究,这些多糖异常地能够引发 T 细胞反应,并已用于开发潜在的全多糖癌症疫苗。描述了糖缀合物疫苗免疫原性提高的一般趋势。由于疫苗的免疫原性还取决于载体蛋白类型和与多糖的连接方式,因此还综述了不同载体蛋白和生产方法的影响。我们认为,一般来说,没有一种用于糖缀合物疫苗的最佳载体。这表明载体蛋白的选择通常是基于具体情况做出的,基于产生最佳免疫反应的方式和在每种情况下都能安全生产的方式。: AUC: 分析超速离心; BSA: 牛血清白蛋白; CD: 圆二色性光谱; CPS: 荚膜多糖; CRM197: 交叉反应物质 197; DT: 白喉毒素; Hib: 型 b; MALS: 多角度光散射; Men: ; MHC-II: 主要组织相容性复合体 II; NMR: 核磁共振光谱; OMP: 外膜蛋白; PRP: 多聚核糖醇磷酸; PSA: 多糖 A1; Sa: ; St.: ; SEC: 尺寸排阻色谱; Sta: ; TT: 破伤风毒素; ZPS: 两性离子多糖(s)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验