Xu Zhong, Yang Tao, Chu Xiang, Su Hai, Wang Zixing, Chen Ningjun, Gu Bingni, Zhang Hepeng, Deng Weili, Zhang Haitao, Yang Weiqing
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, PR China.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10341-10349. doi: 10.1021/acsami.9b20128. Epub 2020 Feb 21.
Solid-state composite polymer electrolytes (CPEs) usually suffer from intrinsic low ionic conductivity and a solid-solid interface, badly inhibiting their widespread commercial application in all-solid-state Li-metal battery (ASSLMB) energy storage. Herein, a synergetic strategy using strong Lewis acid-base and weak hydrogen bonds was employed for self-assembly in situ construction of three-dimensional (3D) network-structured poly(ethylene oxide) (PEO) and SiO CPEs (PEO@SiO). Ascribed to this synergistically rigid-flexible coupling dynamic strategy, a harmonious incorporation of monodispersed SiO nanoparticles into PEO could remarkably reduce crystallinity of PEO, significantly enhancing the ionic conductivity (∼1.1 × 10 S cm at 30 °C) and dramatically facilitating solid electrolyte interface stabilization (electrochemical stability window > 4.8 V at 90 °C). Moreover, the PEO@SiO-based ASSLMBs possess excellent rate capability over a wide temperature range (∼105 mA h g under 2 C at 90 °C), high temperature cycling capacity (retaining 90 mA h g after 100 cycles at 90 °C), and high specific capacity (146 mA h g under 0.3 C at 90 °C). Unambiguously, these high ionic conductivity CPEs along with excellent flexibility and safety can be one of the most promising candidates for high-performance ASSLMBs, evidently revealing that this synergistically rigid-flexible coupling dynamic strategy will open up a way to exploit the novel high ionic conductivity solid-state electrolytes.
固态复合聚合物电解质(CPEs)通常存在固有的低离子电导率和固-固界面问题,严重阻碍了它们在全固态锂金属电池(ASSLMB)储能领域的广泛商业应用。在此,采用了一种利用强路易斯酸碱和弱氢键的协同策略,用于原位自组装构建三维(3D)网络结构的聚环氧乙烷(PEO)和SiO复合聚合物电解质(PEO@SiO)。由于这种协同的刚柔耦合动态策略,将单分散的SiO纳米颗粒和谐地掺入PEO中可以显著降低PEO的结晶度,显著提高离子电导率(30℃时约为1.1×10 S cm),并极大地促进固体电解质界面的稳定(90℃时电化学稳定窗口>4.8 V)。此外,基于PEO@SiO的ASSLMB在很宽的温度范围内具有优异的倍率性能(90℃时2 C下约为105 mA h g)、高温循环容量(90℃时100次循环后保持90 mA h g)和高比容量(90℃时0.3 C下为146 mA h g)。毫无疑问,这些具有高离子电导率、优异柔韧性和安全性的复合聚合物电解质可能是高性能ASSLMB最有前途的候选者之一,这明显表明这种协同的刚柔耦合动态策略将为开发新型高离子电导率固态电解质开辟一条道路。