Liu Shujie, Shan Haoru, Xia Shuhui, Yan Jianhua, Yu Jianyong, Ding Bin
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31439-31447. doi: 10.1021/acsami.0c06922. Epub 2020 Jul 6.
Flexible oxide ceramic films offer prospects for revolutionizing diverse fields such as energy and electronics, but their fabrication methods are typically elaborate and cannot be expanded. Here, we report a scalable strategy to fabricate flexible and robust SiO nanofiber films with controllable morphology using a sol-gel electrospinning method followed by low-temperature calcination. When applied to composite polymer electrolytes (CPEs) for solid-state batteries by filling polyethylene oxide into porous ceramic films, SiO nanofibers with large surface areas (51 m·g) demonstrate strong Lewis interfacial interactions and isotropic ionic transfer channels that mitigate polymer crystallinity and Li-concentration polarization, imparting high conductivity (1.3 × 10 S·cm at 30 °C) and structural stability to the electrolytes. As a result, all-solid-state LiFePO||Li shows great rate capability and long cycling stability with high discharge capacities of 159 and 132 mA·h·g at 0.5C under 60 and 45 °C, respectively, demonstrating broad commercial prospects for the scale production of efficient solid electrolytes.
柔性氧化物陶瓷薄膜为能源和电子等多个领域带来了变革的前景,但其制造方法通常很复杂且无法扩大规模。在此,我们报告了一种可扩展的策略,通过溶胶 - 凝胶静电纺丝法随后进行低温煅烧,来制备具有可控形态的柔性且坚固的SiO纳米纤维薄膜。当通过将聚环氧乙烷填充到多孔陶瓷薄膜中应用于固态电池的复合聚合物电解质(CPE)时,具有大表面积(51 m²·g⁻¹)的SiO纳米纤维表现出强大的路易斯界面相互作用和各向同性离子传输通道,可减轻聚合物结晶度和锂浓度极化,赋予电解质高电导率(30 °C时为1.3 × 10⁻³ S·cm⁻¹)和结构稳定性。结果,全固态LiFePO₄||Li在60和45 °C下于0.5C时分别具有159和132 mA·h·g的高放电容量,展现出优异的倍率性能和长循环稳定性,为高效固体电解质的规模化生产展示了广阔的商业前景。