Suppr超能文献

一种制备具有卓越电化学性能的超小空心纳米结构的通用策略。

A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance.

作者信息

Fan Minmin, Liao Dankui, Aboud Mohamed F Aly, Shakir Imran, Xu Yuxi

机构信息

School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China.

Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China.

出版信息

Angew Chem Int Ed Engl. 2020 May 18;59(21):8247-8254. doi: 10.1002/anie.202000352. Epub 2020 Mar 6.

Abstract

A facile and versatile microwave-assisted and shell-confined Kirkendall diffusion strategy is used to fabricate ultrasmall hollow nanoparticles by modulating the growth and thermal conversion of metal-organic framework (MOF) nanocrystals on graphene. This method involves that the adsorption of microwave by graphene creates a high-energy environment in a short time to decompose the in situ grown MOF nanocrystals into well-dispersed uniform core-shell nanoparticles with ultrasmall size. Upon a shell-confined Kirkendall diffusion process, hollow nanoparticles of multi-metal oxides, phosphides, and sulfides with the diameter below 20 nm and shell thickness below 3 nm can be obtained for the first time. Ultrasmall hollow nanostructures such as Fe2O3 can promote much faster charge transport and expose more active sites as well as migrate the volume change stress more efficiently than the solid and large hollow counterparts, thus demonstrating remarkable lithium-ion storage performance.

摘要

一种简便通用的微波辅助且壳层限制的柯肯达尔扩散策略被用于通过调控金属有机框架(MOF)纳米晶体在石墨烯上的生长和热转化来制备超小空心纳米粒子。该方法涉及石墨烯对微波的吸附在短时间内创造一个高能环境,以将原位生长的MOF纳米晶体分解为尺寸超小、分散均匀的核壳纳米粒子。经过壳层限制的柯肯达尔扩散过程,首次能够获得直径低于20 nm且壳层厚度低于3 nm的多金属氧化物、磷化物和硫化物空心纳米粒子。与实心和大尺寸空心的对应物相比,诸如Fe2O3这样的超小空心纳米结构能够促进更快的电荷传输,暴露出更多活性位点,并且更有效地迁移体积变化应力,从而展现出卓越的锂离子存储性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验