Suppr超能文献

线粒体区室化赋予 2-酮酸递归途径特异性:提高.中异戊醇的产量

Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in .

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

ACS Synth Biol. 2020 Mar 20;9(3):546-555. doi: 10.1021/acssynbio.9b00420. Epub 2020 Feb 21.

Abstract

Recursive elongation pathways produce compounds of increasing carbon-chain length with each iterative cycle. Of particular interest are 2-ketoacids derived from recursive elongation, which serve as precursors to a valuable class of advanced biofuels known as branched-chain higher alcohols (BCHAs). Protein engineering has been used to increase the number of iterative elongation cycles completed, yet specific production of longer-chain 2-ketoacids remains difficult to achieve. Here, we show that mitochondrial compartmentalization is an effective strategy to increase specificity of recursive pathways to favor longer-chain products. Using 2-ketoacid elongation as a proof of concept, we show that overexpression of the three elongation enzymes-, , and -in mitochondria of an isobutanol production strain results in a 2.3-fold increase in the isopentanol to isobutanol product ratio relative to overexpressing the same elongation enzymes in the cytosol, and a 31-fold increase relative to wild-type enzyme expression. Reducing the loss of intermediates allows us to further boost isopentanol production to 1.24 ± 0.06 g/L of isopentanol. In this strain, isopentanol accounts for 86% of the total BCHAs produced, while achieving the highest isopentanol titer reported for . Localizing the elongation enzymes in mitochondria  enables the development of strains in which isopentanol constitutes as much as 93% of BCHA production. This work establishes mitochondrial compartmentalization as a new approach to favor high titers and product specificities of larger products from recursive pathways.

摘要

递归延伸途径会在每个迭代循环中产生碳链长度不断增加的化合物。特别有趣的是,由递归延伸产生的 2-酮酸,它们是一类称为支链高级醇(BCHA)的有价值的先进生物燃料的前体。蛋白质工程已被用于增加完成的迭代延伸循环的数量,但特定的更长链 2-酮酸的生产仍然难以实现。在这里,我们表明线粒体区室化是一种有效的策略,可以提高递归途径的特异性,以有利于更长链的产物。我们使用 2-酮酸延伸作为概念验证,表明在线粒体中过度表达三种延伸酶、和,可以使异丁醇生产菌株中的异戊醇与异丁醇产物的比例相对于在细胞质中过表达相同的延伸酶增加 2.3 倍,相对于野生型酶表达增加 31 倍。减少中间产物的损失使我们能够进一步提高异戊醇的产量,达到 1.24 ± 0.06 g/L 的异戊醇。在该菌株中,异戊醇占所产生的总 BCHA 的 86%,而达到了文献中报道的最高异戊醇浓度。将延伸酶定位在线粒体中,可以开发出异戊醇构成 BCHA 产量高达 93%的菌株。这项工作确立了线粒体区室化作为一种新方法,可以有利于从递归途径获得更高的产物浓度和产物特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验