Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Cell Rep Methods. 2024 Jan 22;4(1):100692. doi: 10.1016/j.crmeth.2023.100692. Epub 2024 Jan 16.
We have developed an open-source workflow that allows for quantitative single-cell analysis of organelle morphology, distribution, and inter-organelle contacts with an emphasis on the analysis of mitochondria and mitochondria-endoplasmic reticulum (mito-ER) contact sites. As the importance of inter-organelle contacts becomes more widely recognized, there is a concomitant increase in demand for tools to analyze subcellular architecture. Here, we describe a workflow we call MitER (pronounced "mightier"), which allows for automated calculation of organelle morphology, distribution, and inter-organelle contacts from 3D renderings by employing the animation software Blender. We then use MitER to quantify the variations in the mito-ER networks of Saccharomyces cerevisiae, revealing significantly more mito-ER contacts within respiring cells compared to fermenting cells. We then demonstrate how this workflow can be applied to mammalian systems and used to monitor mitochondrial dynamics and inter-organelle contact in time-lapse studies.
我们开发了一种开源工作流程,可实现细胞器形态、分布和细胞器间相互作用的定量单细胞分析,重点是分析线粒体和线粒体-内质网(mito-ER)接触位点。随着细胞器间相互作用的重要性得到更广泛的认可,对分析亚细胞结构的工具的需求也相应增加。在这里,我们描述了一个称为 MitER(发音为“mightier”)的工作流程,它允许通过使用动画软件 Blender 从 3D 渲染中自动计算细胞器形态、分布和细胞器间相互作用。然后,我们使用 MitER 来量化酿酒酵母中 mito-ER 网络的变化,结果显示,与发酵细胞相比,呼吸细胞中的 mito-ER 接触明显更多。然后,我们展示了如何将此工作流程应用于哺乳动物系统,并用于监测时间 lapse 研究中的线粒体动力学和细胞器间相互作用。