Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China.
Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
J Am Chem Soc. 2020 Mar 11;142(10):4800-4806. doi: 10.1021/jacs.9b13782. Epub 2020 Feb 20.
The ubiquitous biomembrane interface, with its dynamic lateral fluidity, allows membrane-bound components to rearrange and localize for high-affinity multivalent ligand-receptor interactions in diverse life activities. Inspired by this, we herein engineered a fluidic multivalent nanointerface by decorating a microfluidic chip with aptamer-functionalized leukocyte membrane nanovesicles for high-performance isolation of circulating tumor cells (CTCs). This fluidic biomimetic nanointerface with active recruitment-binding afforded significant affinity enhancement by 4 orders of magnitude, exhibiting 7-fold higher capture efficiency compared to a monovalent aptamer functionalized-chip in blood. Meanwhile, this soft nanointerface inherited the biological benefits of a natural biomembrane, minimizing background blood cell adsorption and maintaining excellent CTC viability (97.6%). Using the chip, CTCs were successfully detected in all cancer patient samples tested (17/17), suggesting the high potential of this fluidity-enhanced multivalent binding strategy in clinical applications. We expect this bioengineered interface strategy will lead to the design of innovative biomimetic platforms in the biomedical field by leveraging natural cell-cell interaction with a natural biomaterial.
无处不在的生物膜界面具有动态的侧向流动性,允许膜结合成分重新排列和定位,以实现高亲和力的多价配体-受体相互作用,从而在各种生命活动中发挥作用。受此启发,我们通过在微流控芯片上修饰适配体功能化的白细胞膜纳米囊泡,设计了一种流体化的多价纳米界面,用于高性能分离循环肿瘤细胞(CTC)。这种具有主动募集-结合作用的流体仿生纳米界面提供了 4 个数量级的显著亲和力增强,与单价适配体功能化芯片相比,在血液中的捕获效率提高了 7 倍。同时,这种软纳米界面继承了天然生物膜的生物学优势,最大限度地减少了背景血细胞的吸附,并保持了优异的 CTC 活力(97.6%)。使用该芯片,成功地在所有测试的癌症患者样本中检测到了 CTC(17/17),这表明这种增强流体动力学的多价结合策略在临床应用中具有很高的潜力。我们预计,这种生物工程界面策略将通过利用天然细胞-细胞相互作用与天然生物材料,为生物医学领域设计创新的仿生平台提供新的思路。