Marbella Lauren E, Zekoll Stefanie, Kasemchainan Jitti, Emge Steffen P, Bruce Peter G, Grey Clare P
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
Chem Mater. 2019 Apr 23;31(8):2762-2769. doi: 10.1021/acs.chemmater.8b04875. Epub 2019 Apr 5.
All-solid-state batteries potentially offer safe, high-energy-density electrochemical energy storage, yet are plagued with issues surrounding Li microstructural growth and subsequent cell death. We use Li NMR chemical shift imaging and electron microscopy to track Li microstructural growth in the garnet-type solid electrolyte, LiLaZrTaO. Here, we follow the early stages of Li microstructural growth during galvanostatic cycling, from the formation of Li on the electrode surface to dendritic Li connecting both electrodes in symmetrical cells, and correlate these changes with alterations observed in the voltage profiles during cycling and impedance measurements. During these experiments, we observe transformations at both the stripping and plating interfaces, indicating heterogeneities in both Li removal and deposition. At low current densities, Li magnetic resonance imaging detects the formation of Li microstructures in cells before short-circuits are observed and allows changes in the electrochemical profiles to be rationalized.
全固态电池有望提供安全、高能量密度的电化学储能,但却饱受锂微观结构生长及随后电池失效等问题的困扰。我们利用锂核磁共振化学位移成像和电子显微镜来追踪石榴石型固体电解质LiLaZrTaO中锂微观结构的生长情况。在此,我们追踪恒电流循环过程中锂微观结构生长的早期阶段,从电极表面锂的形成到对称电池中连接两个电极的树枝状锂,并将这些变化与循环过程中电压曲线和阻抗测量中观察到的变化相关联。在这些实验中,我们在析锂和镀锂界面均观察到转变,表明锂脱嵌和沉积过程中存在不均匀性。在低电流密度下,锂磁共振成像在观察到短路之前就能检测到电池中锂微观结构的形成,并能使电化学曲线的变化得到合理解释。