Seth Aqshat, Kulkarni Rutvij Pankaj, Sai Gautam Gopalakrishnan
Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India.
ACS Mater Au. 2025 Feb 5;5(3):458-468. doi: 10.1021/acsmaterialsau.4c00117. eCollection 2025 May 14.
Due to its immense importance as an amorphous solid electrolyte in thin-film devices, lithium phosphorus oxynitride (LiPON) has garnered significant scientific attention. However, investigating Li transport within the LiPON framework, especially across a Li||LiPON interface, has proven challenging due to its amorphous nature and varying stoichiometry, necessitating large supercells and long time scales for computational models. Notably, machine-learned interatomic potentials (MLIPs) can combine the computational speed of classical force fields with the accuracy of density functional theory (DFT), making them the ideal tool for modeling such amorphous materials. Thus, in this work, we train and validate the neural equivariant interatomic potential (NequIP) framework on a comprehensive DFT-based data set consisting of 13,454 chemically relevant structures to describe LiPON. With optimized training (validation) energy and force mean absolute errors of 5.5 (6.1) meV/atom and 13.6 (13.2) meV/Å, respectively, we employ the trained potential to model Li transport in both bulk LiPON and across Li||LiPON interfaces. Amorphous LiPON structures generated by the optimized potential resemble those generated by molecular dynamics, with N being incorporated on nonbridging apical and bridging sites. Subsequent analysis of Li diffusivity in the bulk LiPON structures indicates broad agreement with prior computational and experimental literature. Further, we investigate the anisotropy in Li transport across the Li(110)||LiPON and Li(111)||LiPON interface, where we observe Li transport across the interface to be one order of magnitude slower than Li motion within the bulk Li and LiPON phases. Nevertheless, we note that this anisotropy of Li transport across the interface is minor, and we do not expect it to cause any significant impedance buildup. Finally, our work highlights the efficiency of MLIPs in enabling high-fidelity modeling of complex noncrystalline systems over large length and time scales.
由于锂磷氧氮化物(LiPON)作为薄膜器件中的非晶态固体电解质具有极其重要的意义,因此受到了科学界的广泛关注。然而,由于LiPON的非晶态性质和化学计量比的变化,研究Li在LiPON框架内的传输,特别是跨越Li||LiPON界面的传输,已被证明具有挑战性,这使得计算模型需要大型超胞和长时间尺度。值得注意的是,机器学习原子间势(MLIPs)可以将经典力场的计算速度与密度泛函理论(DFT)的精度相结合,使其成为模拟此类非晶态材料的理想工具。因此,在这项工作中,我们在一个由13454个化学相关结构组成的基于DFT的综合数据集上训练和验证了神经等变原子间势(NequIP)框架,以描述LiPON。经过优化训练(验证)后,能量和力的平均绝对误差分别为5.5(6.1)meV/原子和13.6(13.2)meV/Å,我们使用训练好的势来模拟体相LiPON中以及跨越Li||LiPON界面的Li传输。由优化后的势生成的非晶态LiPON结构类似于由分子动力学生成的结构,其中N被纳入非桥接顶端和桥接位点。随后对体相LiPON结构中Li扩散率的分析表明,与先前的计算和实验文献结果基本一致。此外,我们研究了Li在Li(110)||LiPON和Li(111)||LiPON界面传输中的各向异性,发现在界面处Li的传输比在体相Li和LiPON相中的Li运动慢一个数量级。然而,我们注意到Li在界面处传输的这种各向异性较小,预计不会导致任何显著的阻抗积累。最后,我们的工作突出了MLIPs在大长度和时间尺度上对复杂非晶态系统进行高保真建模的效率。