Sattigeri Raghottam M, Pillai Sharad Babu, Jha Prafulla K, Chakraborty Brahmananda
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India.
Phys Chem Chem Phys. 2020 Feb 28;22(8):4602-4609. doi: 10.1039/c9cp06155j. Epub 2020 Feb 13.
Topological Insulators (TI) exhibit robust spin-locked dissipationless Fermion transport along the surface states. In the current study, we use first-principles calculations to investigate a Topological Phase Transition (TPT) in a Half-Heusler (HH) compound LiMgBi driven by a Volume Expansive Pressure (VEP) which is attributed to the presence of, intrinsic voids, thermal perturbations and/or due to a phenomena known as cavity nuclei. We find that, the dynamically stable face-centred cubic (FCC) structure of LiMgBi (which belongs to the F4[combining macron]3m[216] space group), undergoes TPT beyond a critical VEP (at 4.0%). The continuous application of VEP from 0.0% to 8.0% results in a phase transition from a, band insulator to a Dirac semi-metal nature. Qualitatively, the Dirac cone formation and band inversion along the high symmetry point Γ in the Brillouin Zone (BZ) are analysed in terms of Electronic Band Structure (EBS) and Projected Local Density of States (LDOS). The TPT is further characterised by the [Doublestruck Z] invariant, (ν, ννν) ≡ (1, 0 0 0) along the (0001) surface which indicates quantitatively that, HH LiMgBi is a strong TI. We hence propose, HH LiMgBi (known for its piezoelectric, thermo-electric and semi-conducting applications) as a strong TI with potential multi-purpose application in the field of electronics, spintronics and quantum computation.