Sattigeri Raghottam M, Jha Prafulla K
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
Sci Rep. 2021 Mar 19;11(1):6432. doi: 10.1038/s41598-021-85806-1.
We propose a novel technique of dimensional engineering to realize low dimensional topological insulator from a trivial three dimensional parent. This is achieved by confining the bulk system to one dimension along a particular crystal direction, thus enhancing the quantum confinement effects in the system. We investigate this mechanism in the Half-Heusler compound LiMgAs with face-centered cubic (FCC) structure. At ambient conditions the bulk FCC structure exhibits a semi-conducting nature. But, under the influence of high volume expansive pressure (VEP) the system undergoes a topological phase transition (TPT) from semi-conducting to semi-metallic forming a Dirac cone. At a critical VEP we observe that, spin-orbit coupling (SOC) effects introduce a gap of [Formula: see text] 1.5 meV in the Dirac cone at high symmetry point [Formula: see text] in the Brillouin zone. This phase of bulk LiMgAs exhibits a trivial nature characterized by the [Formula: see text] invariants as (0,000). By further performing dimensional engineering, we cleave [111] plane from the bulk FCC structure and confine the system in one dimension. This low-dimensional phase of LiMgAs has structure similar to the two dimensional [Formula: see text] system. Under a relatively lower compressive strain, the low-dimensional system undergoes a TPT and exhibits a non-trivial topological nature characterized by the SOC gap of [Formula: see text] 55 meV and [Formula: see text] invariant [Formula: see text] = 1. Although both, the low-dimensional and bulk phase exhibit edge and surface states, the low-dimensional phase is far more superior and exceptional as compared to the bulk parent in terms of the velocity of Fermions ([Formula: see text]) across the surface states. Such a system has promising applications in nano-electronics.
我们提出了一种新颖的维度工程技术,以从平凡的三维母体实现低维拓扑绝缘体。这是通过将体系统沿特定晶体方向限制在一维来实现的,从而增强了系统中的量子限制效应。我们在具有面心立方(FCC)结构的半赫斯勒化合物LiMgAs中研究了这种机制。在环境条件下,体FCC结构表现出半导体性质。但是,在高体积膨胀压力(VEP)的影响下,系统经历了从半导体到半金属的拓扑相变(TPT),形成了狄拉克锥。在临界VEP下,我们观察到,自旋轨道耦合(SOC)效应在布里渊区高对称点[公式:见正文]处的狄拉克锥中引入了1.5 meV的能隙。体LiMgAs的这个相表现出平凡的性质,其[公式:见正文]不变量为(0,000)。通过进一步进行维度工程,我们从体FCC结构中劈开[111]平面,并将系统限制在一维。LiMgAs的这个低维相具有与二维[公式:见正文]系统相似的结构。在相对较低的压缩应变下,低维系统经历TPT,并表现出非平凡的拓扑性质,其特征是SOC能隙为[公式:见正文]55 meV,[公式:见正文]不变量[公式:见正文]=1。尽管低维和体相都表现出边缘和表面态,但就费米子([公式:见正文])穿过表面态的速度而言,低维相比体母体要优越得多且更为特殊。这样的系统在纳米电子学中有很有前景的应用。