Suppr超能文献

人胚胎干细胞来源的神经干细胞微囊泡移植促进坐骨神经再生。

Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells.

机构信息

Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China.

Department of Clinical Laboratory, Nantong First People's Hospital, Nantong, 226000, Jiangsu, China.

出版信息

Cell Tissue Bank. 2020 Jun;21(2):233-248. doi: 10.1007/s10561-020-09816-5. Epub 2020 Feb 12.

Abstract

Injured nerves cannot regenerate on their own, and a lack of engraftable human nerves has been a major obstacle in cell-based therapies for regenerating damaged nerves. A monolayer culture approach to obtain adherent neural stem cells from human embryonic stem cells (hESC-NSCs) was established, and the greatest number of stemness characteristics were achieved by the eighth generation of hESC-NSCs (P8 hESC-NSCs). To overcome deficits in cell therapy, we used microvesicles secreted from P8 hESC-NSCs (hESC-NSC-MVs) instead of entire hESC-NSCs. To investigate the therapeutic efficacy of hESC-NSC-MVs in vitro, hESC-NSC-MVs were cocultured with dorsal root ganglia to determine the length of axons. In vivo, we transected the sciatic nerve in SD rats and created a 5-mm gap. A sciatic nerve defect was bridged using a silicone tube filled with hESC-NSC-MVs (45 μg) in the MVs group, P8 hESC-NSCs (1 × 10 single cells) in the cell group and PBS in the control group. The hESC-NSC-MVs group showed better morphological recovery and a significantly greater number of regenerated axons than the hESC-NSCs group 12 weeks after nerve injury. These results indicated that the hESC-NSC-MVs group had the greatest ability to repair and reconstruct nerve structure and function. As a result, hESC-NSC-MVs may have potential for applications in the field of nerve regenerative repair.

摘要

受损的神经无法自行再生,而缺乏可移植的人类神经一直是基于细胞的神经再生疗法的主要障碍。建立了一种从人胚胎干细胞(hESC-NSCs)获得贴壁神经干细胞的单层培养方法,通过第八代 hESC-NSCs(P8 hESC-NSCs)获得了最多的干细胞特性。为了克服细胞治疗的缺陷,我们使用来自 P8 hESC-NSCs 的微泡(hESC-NSC-MVs)代替整个 hESC-NSCs。为了研究 hESC-NSC-MVs 在体外的治疗效果,将 hESC-NSC-MVs 与背根神经节共培养以确定轴突的长度。在体内,我们在 SD 大鼠中横断坐骨神经并造成 5mm 的间隙。在 MV 组中,使用填充有 hESC-NSC-MVs(45μg)的硅胶管桥接坐骨神经缺损,在细胞组中使用 P8 hESC-NSCs(1×10 个单细胞),在对照组中使用 PBS。与 hESC-NSCs 组相比,神经损伤后 12 周,hESC-NSC-MVs 组的形态恢复更好,再生轴突的数量明显更多。这些结果表明,hESC-NSC-MVs 组具有修复和重建神经结构和功能的最大能力。因此,hESC-NSC-MVs 可能在神经再生修复领域具有应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验