Suppr超能文献

一种分子条码,用于指示间日疟原虫疟疾的地理来源和传播动态。

A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria.

机构信息

Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.

Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

出版信息

PLoS Genet. 2020 Feb 13;16(2):e1008576. doi: 10.1371/journal.pgen.1008576. eCollection 2020 Feb.

Abstract

Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.

摘要

虽然疟原虫 vivax 寄生虫是撒哈拉以南非洲以外地区疟疾的主要病原体,但它们并不总是被消除规划所优先考虑。疟原虫 vivax 具有很强的适应性,能够从人类肝脏的休眠状态重新出现,这给消除工作带来了挑战。由于观察到耐药性的增长和危及生命的感染病例的增加,需要新的工具来为消除工作提供信息。为了阻止传播,我们需要更好地了解传播动态、寄生虫的运动以及感染的储存库,以便设计有针对性的干预措施。分子遗传学和流行病学用于跟踪和研究疟原虫种群的方法已成功应用于疟原虫 falciparum 物种,在这里,我们试图为疟原虫 vivax 开发一种分子遗传工具。通过组装最大的疟原虫 vivax 全基因组序列集(n = 433),跨越 17 个国家,并应用机器学习方法,我们创建了一个具有高度预测能力的 71 SNP 条码,可用于识别地理起源(91.4%)。此外,由于包括了种群内变异性的标记,该条码还可以区分当地的传播网络。通过使用来自马来西亚低传播环境的疟原虫数据,我们展示了推断暴发事件的潜力。通过对从英国旅行者(n = 132)来源的疟原虫 DNA 中的条码 SNP 基因型进行特征分析,这些旅行者前往十个主要不在条码构建中使用的疟疾流行国家,我们正确预测了感染起源的地理区域。总体而言,71 SNP 条码优于以前发表的基因分型方法,当在新的便携式平台上推出时,它很可能成为一种宝贵的工具,有助于针对这种具有抗药性的人类疟疾进行有针对性的干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b502/7043780/b47e0de297d5/pgen.1008576.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验