Suppr超能文献

NIOSH 大麻相关健康危害评估和研究综述。

Review of NIOSH Cannabis-Related Health Hazard Evaluations and Research.

机构信息

NIOSH, Division of Science Integration, Cincinnati, OH, USA.

NIOSH, Division of Field Studies and Engineering, Cincinnati, OH, USA.

出版信息

Ann Work Expo Health. 2020 Aug 6;64(7):693-704. doi: 10.1093/annweh/wxaa013.

Abstract

Since 2004, the National Institute for Occupational Safety and Health (NIOSH) has received 10 cannabis-related health hazard evaluation (HHE) investigation requests from law enforcement agencies (n = 5), state-approved cannabis grow operations (n = 4), and a coroner's office (n = 1). Earlier requests concerned potential illicit drug exposures (including cannabis) during law enforcement activities and criminal investigations. Most recently HHE requests have involved state-approved grow operations with potential occupational exposures during commercial cannabis production for medicinal and non-medical (recreational) use. As of 2019, the United States Drug Enforcement Administration has banned cannabis as a Schedule I substance on the federal level. However, cannabis legalization at the state level has become more common in the USA. In two completed cannabis grow operation HHE investigations (two investigations are still ongoing as of 2019), potential dermal exposures were evaluated using two distinct surface wipe sample analytical methods. The first analyzed for delta-9-tetrahydrocannabinol (Δ9-THC) using a liquid chromatography and tandem mass spectrometry (LC-MS-MS) method with a limit of detection (LOD) of 4 nanograms (ng) per sample. A second method utilized high performance liquid chromatography with diode-array detection to analyze for four phytocannabinoids (Δ9-THC, Δ9-THC acid, cannabidiol, and cannabinol) with a LOD (2000 ng per sample) which, when comparing Δ9-THC limits, was orders of magnitude higher than the LC-MS-MS method. Surface wipe sampling results for both methods illustrated widespread contamination of all phytocannabinoids throughout the tested occupational environments, highlighting the need to consider THC form (Δ9-THC or Δ9-THC acid) as well as other biologically active phytocannabinoids in exposure assessments. In addition to potential cannabis-related dermal exposures, ergonomic stressors, and psychosocial issues, the studies found employees in cultivation, harvesting, and processing facilities could potentially be exposed to allergens and respiratory hazards through inhalation of organic dusts (including fungus, bacteria, and endotoxin) and volatile organic compounds (VOCs) such as diacetyl and 2,3-pentanedione. These hazards were most evident during the decarboxylation and grinding of dried cannabis material, where elevated job-specific concentrations of VOCs and endotoxin were generated. Additionally, utilization of contemporary gene sequencing methods in NIOSH HHEs provided a more comprehensive characterization of microbial communities sourced during cannabis cultivation and processing. Internal Transcribed Spacer region sequencing revealed over 200 fungal operational taxonomic units and breathing zone air samples were predominantly composed of Botrytis cinerea, a cannabis plant pathogen. B. cinerea, commonly known as gray mold within the industry, has been previously associated with hypersensitivity pneumonitis. This work elucidates new occupational hazards related to cannabis production and the evolving occupational safety and health landscape of an emerging industry, provides a summary of cannabis-related HHEs, and discusses critical lessons learned from these previous HHEs.

摘要

自 2004 年以来,美国职业安全与健康研究所(NIOSH)已收到来自执法机构(n=5)、经州批准的大麻种植作业(n=4)和验尸官办公室(n=1)的 10 份与大麻相关的健康危害评估(HHE)调查请求。早期的请求涉及执法活动和刑事调查期间潜在的非法药物暴露(包括大麻)。最近,HHE 请求涉及州批准的种植作业,在医用和非医用(娱乐用)大麻生产过程中存在潜在的职业暴露。截至 2019 年,美国缉毒署已将大麻在联邦层面上列为附表 I 物质。然而,大麻在州一级的合法化在美国变得越来越普遍。在两项已完成的大麻种植作业 HHE 调查(截至 2019 年,仍有两项调查正在进行中)中,使用两种不同的表面擦拭样品分析方法评估了潜在的皮肤暴露。第一种方法使用液相色谱和串联质谱(LC-MS-MS)方法分析了 delta-9-四氢大麻酚(Δ9-THC),检测限(LOD)为每个样品 4 纳克(ng)。第二种方法利用二极管阵列检测的高效液相色谱法分析了四种植物大麻素(Δ9-THC、Δ9-THC 酸、大麻二酚和大麻酚),LOD(每个样品 2000 ng),与 LC-MS-MS 方法相比,其检测限要高几个数量级。两种方法的表面擦拭采样结果表明,在整个测试的职业环境中,所有植物大麻素都受到了广泛的污染,这突出表明在暴露评估中需要考虑 THC 形式(Δ9-THC 或 Δ9-THC 酸)以及其他具有生物活性的植物大麻素。除了潜在的大麻相关皮肤暴露外,工效学压力源和心理社会问题外,研究还发现种植、收获和加工设施的员工在对真菌、细菌和内毒素)和挥发性有机化合物(VOCs)(如二乙酰和 2,3-戊二酮)的吸入,可能会接触到过敏原和呼吸道危害。这些危害在干燥大麻材料的脱羧和研磨过程中最为明显,在此过程中会产生特定工作的高浓度 VOC 和内毒素。此外,NIOSH HHE 中使用现代基因测序方法提供了对大麻种植和加工过程中来源的微生物群落的更全面描述。内部转录间隔区测序揭示了超过 200 种真菌分类单元,呼吸区空气样本主要由 Botrytis cinerea 组成,这是一种大麻植物病原体。B. cinerea,在该行业中通常被称为灰色模具,以前与过敏性肺炎有关。这项工作阐明了与大麻生产相关的新职业危害以及新兴产业的职业安全和健康状况的演变,总结了与大麻相关的 HHE,并讨论了从这些先前的 HHE 中吸取的关键经验教训。

相似文献

5
Occupational health and safety in cannabis production: an Australian perspective.大麻生产中的职业健康与安全:澳大利亚视角
Int J Occup Environ Health. 2018 Jul-Oct;24(3-4):75-85. doi: 10.1080/10773525.2018.1517234. Epub 2018 Oct 3.

引用本文的文献

3
The Emerging Spectrum of Respiratory Diseases in the U.S. Cannabis Industry.美国大麻产业中新兴的呼吸道疾病谱。
Semin Respir Crit Care Med. 2023 Jun;44(3):405-414. doi: 10.1055/s-0043-1766116. Epub 2023 Apr 4.
7
Occupational Allergies to Cannabis.职业性大麻过敏
J Allergy Clin Immunol Pract. 2020 Nov-Dec;8(10):3331-3338. doi: 10.1016/j.jaip.2020.09.003.

本文引用的文献

1
Cannabis allergy: what the clinician needs to know in 2019.2019 年临床医生需要了解的大麻过敏知识。
Expert Rev Clin Immunol. 2019 Jun;15(6):599-606. doi: 10.1080/1744666X.2019.1600403. Epub 2019 Apr 4.
3
Occupational cannabis exposure and allergy risks.职业性大麻暴露与过敏风险。
Occup Environ Med. 2019 Feb;76(2):78-82. doi: 10.1136/oemed-2018-105302. Epub 2018 Dec 15.
4
Cannabis allergy: A diagnostic challenge.大麻过敏:一项诊断挑战。
Allergy. 2018 Sep;73(9):1911-1914. doi: 10.1111/all.13491. Epub 2018 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验