Suppr超能文献

用于在巨正则蒙特卡罗模拟中改进溶质采样的 GPU 特定算法。

GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.

机构信息

Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.

SilcsBio LLC, Baltimore, Maryland, USA.

出版信息

J Comput Chem. 2023 Jul 30;44(20):1719-1732. doi: 10.1002/jcc.27121. Epub 2023 Apr 24.

Abstract

The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μ , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μ GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium. However, the acceptance of GCMC insertions is low, and the method is computationally demanding. In the present study, we improved the sampling efficiency of the GCMC method using known cavity-bias and configurational-bias algorithms in the context of GPU architecture. Specifically, for GCMC simulations of aqueous solution systems, the configurational-bias algorithm was extended by applying system partitioning in conjunction with a random interval extraction algorithm, thereby improving the efficiency in a highly parallel computing environment. The method is parallelized on the GPU using CUDA and OpenCL, allowing for the code to run on both Nvidia and AMD GPUs, respectively. Notably, the method is particularly well suited for GPU computing as the large number of threads allows for simultaneous sampling of a large number of configurations during insertion attempts without additional computational overhead. In addition, the partitioning scheme allows for simultaneous insertion attempts for large systems, offering considerable efficiency. Calculations on the BK Channel, a transporter, including a lipid bilayer with over 760,000 atoms, show a speed up of ~53-fold through the use of system partitioning. The improved algorithm is then combined with an enhanced μ oscillation protocol and shown to be of utility in the context of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach as illustrated through application to the protein CDK2.

摘要

在分子模拟中,由超额化学势 μ 、体积和温度定义的巨正则蒙特卡罗 (GCMC) 系综允许系统中粒子数的变化。实际上,GCMC 模拟已广泛应用于稀有气体和水的采样,但在较大分子的情况下受到限制。为了克服这一限制,引入了振荡 μ GCMC 方法,并证明其在采样小溶质(如甲酰胺、丙烷和苯)以及离子物种(如单阳离子、醋酸盐和甲基铵)方面具有实用性。然而,GCMC 插入的接受率较低,且方法计算量较大。在本研究中,我们使用已知的腔偏差和构象偏差算法在 GPU 架构的背景下提高了 GCMC 方法的采样效率。具体来说,对于水溶液体系的 GCMC 模拟,通过将系统分区与随机区间提取算法相结合,扩展了构象偏差算法,从而在高度并行的计算环境中提高了效率。该方法在 GPU 上使用 CUDA 和 OpenCL 进行并行化,使得代码分别能够在 Nvidia 和 AMD GPU 上运行。值得注意的是,该方法特别适合 GPU 计算,因为大量的线程允许在插入尝试期间同时对大量构型进行采样,而不会增加额外的计算开销。此外,分区方案允许对大型系统进行同时的插入尝试,提供了相当大的效率。对 BK 通道(一种转运蛋白)的计算,包括一个带有超过 76 万个原子的脂质双层,通过使用系统分区实现了约 53 倍的加速。然后将改进的算法与增强的 μ 振荡协议结合使用,并通过将其应用于蛋白 CDK2 来说明在配体竞争饱和 (SILCS) 共溶剂采样方法中的位点识别(SILCS)中的实用性。

相似文献

1
GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.
J Comput Chem. 2023 Jul 30;44(20):1719-1732. doi: 10.1002/jcc.27121. Epub 2023 Apr 24.
3
Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
J Comput Aided Mol Des. 2022 Oct;36(10):767-779. doi: 10.1007/s10822-022-00479-w. Epub 2022 Oct 6.
4
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
5
Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
J Chem Theory Comput. 2018 Oct 9;14(10):5290-5302. doi: 10.1021/acs.jctc.8b00604. Epub 2018 Sep 14.
6
Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
J Chem Theory Comput. 2023 Feb 14;19(3):1050-1062. doi: 10.1021/acs.jctc.2c00823. Epub 2023 Jan 24.
8
py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
J Chem Theory Comput. 2022 Aug 9;18(8):4983-4994. doi: 10.1021/acs.jctc.1c00911. Epub 2022 May 27.
9
Grand canonical Monte Carlo simulations of water in protein environments.
J Chem Phys. 2004 Oct 1;121(13):6392-400. doi: 10.1063/1.1784436.

引用本文的文献

2
Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.
J Chem Inf Model. 2024 Oct 14;64(19):7743-7757. doi: 10.1021/acs.jcim.4c01189. Epub 2024 Sep 16.
3
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
4
Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
J Chem Theory Comput. 2024 Mar 12;20(5):1897-1911. doi: 10.1021/acs.jctc.4c00013. Epub 2024 Feb 28.
5
Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
J Chem Theory Comput. 2023 May 23;19(10):3007-3021. doi: 10.1021/acs.jctc.3c00232. Epub 2023 Apr 28.

本文引用的文献

1
hERG Blockade Prediction by Combining Site Identification by Ligand Competitive Saturation and Physicochemical Properties.
Chemistry (Basel). 2022 Sep;4(3):630-646. doi: 10.3390/chemistry4030045. Epub 2022 Jun 21.
2
Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
J Comput Aided Mol Des. 2022 Oct;36(10):767-779. doi: 10.1007/s10822-022-00479-w. Epub 2022 Oct 6.
3
SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.
J Chem Theory Comput. 2022 Sep 13;18(9):5672-5691. doi: 10.1021/acs.jctc.2c00381. Epub 2022 Aug 1.
6
Mg Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs.
Biophys J. 2020 Mar 24;118(6):1424-1437. doi: 10.1016/j.bpj.2020.01.021. Epub 2020 Jan 28.
9
Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation.
Biophys J. 2020 Feb 25;118(4):909-921. doi: 10.1016/j.bpj.2019.10.007. Epub 2019 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验