Suppr超能文献

SLIM:利用双层模拟氧化阻变随机存取存储器的同时逻辑存储计算。

SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices.

机构信息

Department of Electrical Engineering, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan.

出版信息

Sci Rep. 2020 Feb 13;10(1):2567. doi: 10.1038/s41598-020-59121-0.

Abstract

von Neumann architecture based computers isolate computation and storage (i.e. data is shuttled between computation blocks (processor) and memory blocks). The to-and-fro movement of data leads to a fundamental limitation of modern computers, known as the Memory wall. Logic in-Memory (LIM)/In-Memory Computing (IMC) approaches aim to address this bottleneck by directly computing inside memory units thereby eliminating energy-intensive and time-consuming data movement. Several recent works in literature, propose realization of logic function(s) directly using arrays of emerging resistive memory devices (example- memristors, RRAM/ReRAM, PCM, CBRAM, OxRAM, STT-MRAM etc.), rather than using conventional transistors for computing. The logic/embedded-side of digital systems (like processors, micro-controllers) can greatly benefit from such LIM realizations. However, the pure storage-side of digital systems (example SSDs, enterprise storage etc.) will not benefit much from such LIM approaches as when memory arrays are used for logic they lose their core functionality of storage. Thus, there is the need for an approach complementary to existing LIM techniques, that's more beneficial for the storage-side of digital systems; one that gives compute capability to memory arrays not at the cost of their existing stored states. Fundamentally, this would require memory nanodevice arrays that are capable of storing and computing simultaneously. In this paper, we propose a novel 'Simultaneous Logic in-Memory' (SLIM) methodology which is complementary to existing LIM approaches in literature. Through extensive experiments we demonstrate novel SLIM bitcells (1T-1R/2T-1R) comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors. Proposed bitcells are capable of implementing both Memory and Logic operations simultaneously. Detailed programming scheme, array level implementation, and controller architecture are also proposed. Furthermore, to study the impact of proposed SLIM approach for real-world implementations, we performed analysis for two applications: (i) Sobel Edge Detection, and (ii) Binary Neural Network- Multi layer Perceptron (BNN-MLP). By performing all computations in SLIM bitcell array, huge Energy Delay Product (EDP) savings of ≈75× for 1T-1R (≈40× for 2T-1R) SLIM bitcell were observed for edge-detection application while EDP savings of ≈3.5× for 1T-1R (≈1.6× for 2T-1R) SLIM bitcell were observed for BNN-MLP application respectively, in comparison to conventional computing. EDP savings owing to reduction in data transfer between CPU ↔ memory is observed to be ≈780× (for both SLIM bitcells).

摘要

基于冯·诺依曼架构的计算机将计算和存储分开(即数据在计算块(处理器)和存储块之间来回传输)。这种数据的来回传输导致了现代计算机的一个基本限制,即存储墙。逻辑在内存(LIM)/内存计算(IMC)方法旨在通过直接在内存单元内进行计算来解决这个瓶颈,从而消除能源密集型和耗时的数据移动。文献中的几项最新研究工作提出了直接使用新兴电阻式存储设备(例如忆阻器、RRAM/ReRAM、PCM、CBRAM、OxRAM、STT-MRAM 等)的阵列来实现逻辑功能,而不是使用传统晶体管进行计算。这种 LIM 实现可以极大地受益于数字系统的逻辑/嵌入式端(例如处理器、微控制器)。然而,数字系统的纯存储端(例如 SSD、企业存储等)不会从这种 LIM 方法中受益太多,因为当内存阵列用于逻辑时,它们会失去存储功能。因此,需要一种与现有 LIM 技术互补的方法,这种方法更有利于数字系统的存储端;一种在不影响其现有存储状态的情况下为内存阵列提供计算能力的方法。从根本上说,这将需要能够同时存储和计算的内存纳米器件阵列。在本文中,我们提出了一种新颖的“同时逻辑在内存中(SLIM)”方法,该方法与文献中的现有 LIM 方法互补。通过广泛的实验,我们展示了由 NMOS 晶体管组成的非丝状双层模拟 OxRAM 器件的新型 SLIM 位单元(1T-1R/2T-1R)。所提出的位单元能够同时实现存储和逻辑操作。还提出了详细的编程方案、阵列级实现和控制器架构。此外,为了研究所提出的 SLIM 方法对实际实现的影响,我们对两个应用程序进行了分析:(i)Sobel 边缘检测,和(ii)二进制神经网络-多层感知机(BNN-MLP)。通过在 SLIM 位单元阵列中执行所有计算,观察到边缘检测应用中 1T-1R(2T-1R 约为 40×)SLIM 位单元的能量延迟乘积(EDP)节省约 75×,而 BNN-MLP 应用中 1T-1R(2T-1R 约为 1.6×)SLIM 位单元的 EDP 节省约 3.5×,与传统计算相比。观察到由于 CPU←→内存之间的数据传输减少而导致的 EDP 节省约为 780×(两种 SLIM 位单元均如此)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90a/7018944/0c3b35dbd0bf/41598_2020_59121_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验