Monaheng Neo Mervyn, Parani Sundararajan, Gulumian Mary, Oluwafemi Oluwatobi Samuel
Department of Chemical Sciences (formerly Applied Chemistry) , University of Johannesburg Doornfontein Campus , P.O. Box 17011 , Doornfontein , Johannesburg , South Africa . Email:
Centre for Nanomaterials Science Research , University of Johannesburg Doornfontein Campus , Johannesburg , South Africa.
Toxicol Res (Camb). 2019 Aug 26;8(6):868-874. doi: 10.1039/c9tx00113a. eCollection 2019 Nov 1.
In this work, we report green one-pot synthesis, cytotoxicity and genotoxicity of glutathione-capped CdTe/CdSe/ZnSe heterostructured quantum dots (QDs) using a label-free xCELLigence RTCA system as well as the Cytokinesis Blocked Micronucleus assay. The as-synthesised nanocrystals displayed good optical properties and were spherical in shape with an average particle diameter of 5.9 ± 1.13 nm. The intracellular uptake study showed that most of the as-synthesised glutathione stabilized QDs penetrated the cell membranes and were found randomly localized in the cytoplasm of Chinese Hamster Ovary (CHO) cells even at a lower concentration of 0.5 μg ml. The QDs showed no cytotoxicity to Chinese Hamster Ovary (CHO) cells at six concentrations tested (0.5, 1.0, 2.5, 5.0, 10, and 25 μg ml). However, at 50 and 100 μg ml the material was cytotoxic at significant values of 3.1 × 10 and 9.47 × 10, respectively. Likewise, the material was found to be genotoxic at almost all concentrations tested. The genotoxicity of the nanocrystals in question confers unfavorable potential to all complex heterostructured nanocrystals. Hence, more studies are needed to negate the prevailing assumption that multishell passivation provides enough protection against intracellular QD core dissolution or the production of reactive oxygen species (ROS) before these nanomaterials can be used for human health applications.
在本研究中,我们报告了谷胱甘肽封端的CdTe/CdSe/ZnSe异质结构量子点(QDs)的绿色一锅法合成、细胞毒性和遗传毒性,采用了无标记的xCELLigence RTCA系统以及胞质分裂阻滞微核试验。合成的纳米晶体具有良好的光学性质,呈球形,平均粒径为5.9±1.13nm。细胞内摄取研究表明,即使在较低浓度0.5μg/ml下,大多数合成的谷胱甘肽稳定化量子点也能穿透细胞膜,并随机定位在中国仓鼠卵巢(CHO)细胞的细胞质中。在所测试的六个浓度(0.5、1.0、2.5、5.0、10和25μg/ml)下,量子点对中国仓鼠卵巢(CHO)细胞没有细胞毒性。然而,在50和100μg/ml时,该材料具有细胞毒性,显著值分别为3.1×10和9.47×10。同样,在几乎所有测试浓度下,该材料都具有遗传毒性。所讨论的纳米晶体的遗传毒性给所有复杂的异质结构纳米晶体带来了不利的潜在影响。因此,在这些纳米材料可用于人类健康应用之前,需要更多的研究来否定普遍存在的假设,即多壳层钝化能提供足够的保护,防止细胞内量子点核心溶解或活性氧(ROS)的产生。