Wu An, Abbas S Z, Asghar Z, Sun H, Waqas M, Khan W A
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China.
Department of Mathematics and Statistics, Hazara University Mansehra, Mansehra, KPK, Pakistan.
Biomech Model Mechanobiol. 2020 Oct;19(5):1713-1724. doi: 10.1007/s10237-020-01301-y. Epub 2020 Feb 13.
Cilia beating is a naturally occurring phenomenon that can be utilized in fluid transport in designing several biomechanical devices. Inspired by the ubiquity of bio-fluids (which are non-Newtonian), we report the characteristics of shear-rate-dependent viscosities on fluid flow generated by the wavy propulsion of magnetic cilia. We assume that the metachronal waves of these cilia form a two-dimensional wavy channel, which is filled with generalized Newtonian Carreau liquid. Galilean transformation is employed to relate fixed and moving frames. The constitutive equations are reduced under the classical lubrication assumption. The resulting fourth-order nonlinear differential equations are solved via a perturbation approach using the stream function. The effects of four dominant fluid parameters (shear thinning/thickening, power-law index, and zero- and infinite-shear-rate viscosity), magnetic parameter (Hartmann number), and metachronal wave parameters on fluid velocity, pressure rise per wavelength, and trapping phenomenon are shown in graphical results and explained thoroughly. This study could play an advisory role in designing a magnetic micro-bot useful in the biomedical industry.
纤毛摆动是一种自然发生的现象,可用于流体传输,以设计多种生物力学装置。受生物流体(非牛顿流体)普遍存在的启发,我们报告了磁纤毛波浪推进产生的流体流动中剪切速率依赖性粘度的特性。我们假设这些纤毛的运动波形成一个二维波浪通道,该通道充满广义牛顿卡雷奥液体。采用伽利略变换来关联固定和移动框架。本构方程在经典润滑假设下简化。通过使用流函数的摄动方法求解由此产生的四阶非线性微分方程。图形结果显示了四个主要流体参数(剪切变稀/变稠、幂律指数以及零剪切速率和无限剪切速率粘度)、磁参数(哈特曼数)和运动波参数对流体速度、每波长压力升和捕获现象的影响,并进行了详细解释。这项研究可为设计在生物医学行业有用的磁性微型机器人提供参考。