Suppr超能文献

非血红素硫醇基双核铁配合物的 O 激活。

O Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes.

机构信息

Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China.

Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.

出版信息

Inorg Chem. 2020 Mar 2;59(5):3249-3259. doi: 10.1021/acs.inorgchem.9b03633. Epub 2020 Feb 14.

Abstract

Iron centers featuring thiolates in their metal coordination sphere (as ligands or substrates) are well-known to activate dioxygen. Both heme and non-heme centers that contain iron-thiolate bonds are found in nature. Investigating the ability of iron-thiolate model complexes to activate O is expected to improve the understanding of the key factors that direct reactivity to either iron or sulfur. We report here the structural and redox properties of a thiolate-based dinuclear Fe complex, [Fe(LS)] (LS = 2,2'-(2,2'-bipyridine-6,6'-iyl)bis(1,1-diphenylethanethiolate)), and its reactivity with dioxygen, in comparison with its previously reported protonated counterpart, [Fe(LS)(LSH)]. When reaction with O occurs in the absence of protons or in the presence of 1 equiv of proton (i.e., from [Fe(LS)(LSH)]), unsupported μ-oxo or μ-hydroxo Fe dinuclear complexes ([Fe(LS)O] and [Fe(LS)(OH)], respectively) are generated. [Fe(LS)O], reported previously but isolated here for the first time from O activation, is characterized by single crystal X-ray diffraction and Mössbauer, resonance Raman, and NMR spectroscopies. The addition of protons leads to the release of water and the generation of a mixture of two Fe-based "oxygen-free" species. Density functional theory calculations provide insight into the formation of the μ-oxo or μ-hydroxo Fe dimers, suggesting that a dinuclear μ-peroxo Fe intermediate is key to reactivity, and the structure of which changes as a function of protonation state. Compared to previously reported Mn-thiolate analogues, the evolution of the peroxo intermediates to the final products is different and involves a comproportionation vs a dismutation process for the Mn and Fe derivate, respectively.

摘要

铁中心在其金属配位球中具有硫醇配体(作为配体或底物),众所周知,它们能够激活氧气。在自然界中,既存在含有铁-硫醇键的血红素和非血红素中心,也存在含有铁-硫醇键的非血红素中心。研究铁-硫醇模型配合物激活 O 的能力有望提高对指导反应性向铁或硫的关键因素的理解。我们在此报告了一种基于硫醇的双核 Fe 配合物[Fe(LS)](LS = 2,2'-(2,2'-联吡啶-6,6'-基)双(1,1-二苯基乙硫醇))的结构和氧化还原性质,以及与氧气的反应性,与之前报道的其质子化对应物[Fe(LS)(LSH)]进行了比较。当与氧气反应时,在没有质子或存在 1 当量质子的情况下(即来自[Fe(LS)(LSH)]),会生成未配位的 μ-氧或 μ-羟基金属双核配合物([Fe(LS)O]和[Fe(LS)(OH)],分别)。[Fe(LS)O]以前有报道过,但这是首次从氧气激活中分离出来,并用单晶 X 射线衍射、Mössbauer、共振拉曼和 NMR 光谱进行了表征。添加质子会导致水的释放,并生成两种基于 Fe 的“无氧”物种的混合物。密度泛函理论计算提供了对 μ-氧或 μ-羟基金属二聚体形成的深入了解,表明双核 μ-过氧 Fe 中间体是反应性的关键,其结构随质子化状态的变化而变化。与以前报道的 Mn-硫醇类似物相比,过氧中间体向最终产物的演变不同,Mn 和 Fe 衍生物分别涉及缔合和歧化过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验