Suppr超能文献

组学在预测气候变化对有害藻华影响方面的进展和前景。

Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms.

机构信息

Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States.

Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.

出版信息

Harmful Algae. 2020 Jan;91:101587. doi: 10.1016/j.hal.2019.03.005. Epub 2019 Jun 8.

Abstract

Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have transformed that data landscape of many fields including the study of HABs. Advances in technology have facilitated the creation of many publicly available omics datasets that are complementary and shed new light on the mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. With the ever-increasing omics databases, leveraging these data for understanding climate-driven HAB dynamics will be increasingly powerful.

摘要

气候变化预计会增加有害藻华(HAB)的严重程度和普遍性。在过去的二十年中,组学技术,如基因组学、转录组学、蛋白质组学和代谢组学,已经改变了许多领域的数据格局,包括 HAB 的研究。技术的进步促进了许多公共可用的组学数据集的创建,这些数据集相互补充,并为 HAB 形成和毒素产生的机制提供了新的见解。基因组学被用来揭示毒性和营养需求的差异,而转录组学和蛋白质组学被用来探索 HAB 物种对环境胁迫的反应,代谢组学可以揭示化感作用和毒性的机制。在这篇综述中,我们探讨了如何利用组学数据来提高对气候变化将如何影响 HAB 动态的预测。我们还强调了我们对 HAB 预测的知识中的重要空白,包括游泳行为、微生物相互作用和进化,这些都可以通过未来使用组学工具的研究来解决。最后,我们讨论了将当前的组学数据集纳入预测性数值模型的方法,这可能会增强在不断变化的世界中对 HAB 的预测。随着越来越多的组学数据库的出现,利用这些数据来理解气候驱动的 HAB 动态将变得越来越强大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验