文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

建立基于人工智能的计算机断层扫描肺结节诊断框架。

Establishing an AI-based diagnostic framework for pulmonary nodules in computed tomography.

作者信息

Jia Ruiting, Liu Baozhi, Ali Mohsin

机构信息

Image center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, China.

Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan.

出版信息

BMC Pulm Med. 2025 Jul 12;25(1):339. doi: 10.1186/s12890-025-03806-7.


DOI:10.1186/s12890-025-03806-7
PMID:40652218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12255105/
Abstract

BACKGROUND: Pulmonary nodules seen by computed tomography (CT) can be benign or malignant, and early detection is important for optimal management. The existing manual methods of identifying nodules have limitations, such as being time-consuming and erroneous. OBJECTIVE: This study aims to develop an Artificial Intelligence (AI) diagnostic scheme that improves the performance of identifying and categorizing pulmonary nodules using CT scans. METHOD: The proposed deep learning framework used convolutional neural networks, and the image database totaled 1,056 3D-DICOM CT images. The framework was initially preprocessing, including lung segmentation, nodule detection, and classification. Nodule detection was done using the Retina-UNet model, while the features were classified using a Support Vector Machine (SVM). Performance measures, including accreditation, sensitivity, specificity, and the AUROC, were used to evaluate the model's performance during training and validation. RESULTS: Overall, the developed AI model received an AUROC of 0.9058. The diagnostic accuracy was 90.58%, with an overall positive predictive value of 89% and an overall negative predictive value of 86%. The algorithm effectively handled the CT images at the preprocessing stage, and the deep learning model performed well in detecting and classifying nodules. CONCLUSION: The application of the new diagnostic framework based on AI algorithms increased the accuracy of the diagnosis compared with the traditional approach. It also provides high reliability for detecting pulmonary nodules and classifying the lesions, thus minimizing intra-observer differences and improving the clinical outcome. In perspective, the advancements may include increasing the size of the annotated data-set and fine-tuning the model due to detection issues of non-solitary nodules.

摘要

背景:计算机断层扫描(CT)发现的肺结节可能是良性或恶性的,早期检测对于优化治疗至关重要。现有的手动识别结节的方法存在局限性,例如耗时且容易出错。 目的:本研究旨在开发一种人工智能(AI)诊断方案,以提高使用CT扫描识别和分类肺结节的性能。 方法:所提出的深度学习框架使用卷积神经网络,图像数据库共有1056张3D-DICOM CT图像。该框架首先进行预处理,包括肺部分割、结节检测和分类。使用Retina-UNet模型进行结节检测,同时使用支持向量机(SVM)对特征进行分类。在训练和验证过程中,使用包括准确率、灵敏度、特异性和曲线下面积(AUROC)在内的性能指标来评估模型的性能。 结果:总体而言,所开发的AI模型的AUROC为0.9058。诊断准确率为90.58%,总体阳性预测值为89%,总体阴性预测值为86%。该算法在预处理阶段有效地处理了CT图像,深度学习模型在检测和分类结节方面表现良好。 结论:与传统方法相比,基于AI算法的新诊断框架的应用提高了诊断的准确性。它还为检测肺结节和对病变进行分类提供了高可靠性,从而最大限度地减少观察者内部差异并改善临床结果。从长远来看,由于非孤立结节的检测问题,进展可能包括增加注释数据集的大小并对模型进行微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/fd3c83c00b89/12890_2025_3806_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/700a4aa1cd03/12890_2025_3806_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/d11db829a183/12890_2025_3806_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/7b92b37a1678/12890_2025_3806_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/56a1d5f3ce1d/12890_2025_3806_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/c51f87d6f915/12890_2025_3806_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/fd3c83c00b89/12890_2025_3806_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/700a4aa1cd03/12890_2025_3806_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/d11db829a183/12890_2025_3806_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/7b92b37a1678/12890_2025_3806_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/56a1d5f3ce1d/12890_2025_3806_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/c51f87d6f915/12890_2025_3806_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61a/12255105/fd3c83c00b89/12890_2025_3806_Fig6_HTML.jpg

相似文献

[1]
Establishing an AI-based diagnostic framework for pulmonary nodules in computed tomography.

BMC Pulm Med. 2025-7-12

[2]
Deep learning in pulmonary nodule detection and segmentation: a systematic review.

Eur Radiol. 2025-1

[3]
A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomed Phys Eng Express. 2024-11-20

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Earlier discharge from pulmonary nodule follow-up using artificial intelligence based volume measurements in computed tomography.

Eur J Radiol. 2025-9

[6]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[7]
Automatic 3D pulmonary nodule detection in CT images: A survey.

Comput Methods Programs Biomed. 2016-2

[8]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[9]
External validation of the performance of commercially available deep-learning-based lung nodule detection on low-dose CT images for lung cancer screening in Japan.

Jpn J Radiol. 2025-4

[10]
A Predictive Model Integrating AI Recognition Technology and Biomarkers for Lung Nodule Assessment.

Thorac Cardiovasc Surg. 2025-3

本文引用的文献

[1]
Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.

J Imaging. 2025-2-15

[2]
Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives.

Healthcare (Basel). 2024-1-5

[3]
Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans.

Commun Med (Lond). 2023-10-27

[4]
Artificial intelligence: A critical review of applications for lung nodule and lung cancer.

Diagn Interv Imaging. 2023-1

[5]
Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice?

Transl Lung Cancer Res. 2021-5

[6]
Three artificial intelligence data challenges based on CT and MRI.

Diagn Interv Imaging. 2020-12

[7]
External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules.

Thorax. 2020-3-5

[8]
A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans.

Diagnostics (Basel). 2020-2-28

[9]
Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.

JAMA Netw Open. 2020-2-5

[10]
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.

Eur Radiol. 2019-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索