Suppr超能文献

二维数据非依赖性采集质谱技术的深度蛋白质组学研究

Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry.

机构信息

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.

Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

Anal Chem. 2020 Mar 17;92(6):4217-4225. doi: 10.1021/acs.analchem.9b04418. Epub 2020 Feb 26.

Abstract

Methodologies that facilitate high-throughput proteomic analysis are a key step toward moving proteome investigations into clinical translation. Data independent acquisition (DIA) has potential as a high-throughput analytical method due to the reduced time needed for sample analysis, as well as its highly quantitative accuracy. However, a limiting feature of DIA methods is the sensitivity of detection of low abundant proteins and depth of coverage, which other mass spectrometry approaches address by two-dimensional fractionation (2D) to reduce sample complexity during data acquisition. In this study, we developed a 2D-DIA method intended for rapid- and deeper-proteome analysis compared to conventional 1D-DIA analysis. First, we characterized 96 individual fractions obtained from the protein standard, NCI-7, using a data-dependent approach (DDA), identifying a total of 151,366 unique peptides from 11,273 protein groups. We observed that the majority of the proteins can be identified from just a few selected fractions. By performing an optimization analysis, we identified six fractions with high peptide number and uniqueness that can account for 80% of the proteins identified in the entire experiment. These selected fractions were combined into a single sample which was then subjected to DIA (referred to as 2D-DIA) quantitative analysis. Furthermore, improved DIA quantification was achieved using a hybrid spectral library, obtained by combining peptides identified from DDA data with peptides identified directly from the DIA runs with the help of DIA-Umpire. The optimized 2D-DIA method allowed for improved identification and quantification of low abundant proteins compared to conventional unfractionated DIA analysis (1D-DIA). We then applied the 2D-DIA method to profile the proteomes of two breast cancer patient-derived xenograft (PDX) models, quantifying 6,217 and 6,167 unique proteins in basal- and luminal- tumors, respectively. Overall, this study demonstrates the potential of high-throughput quantitative proteomics using a novel 2D-DIA method.

摘要

方法学的高通量蛋白质组分析是向临床转化的关键一步。数据独立采集(DIA)具有作为高通量分析方法的潜力,因为它减少了样品分析所需的时间,并且具有高度定量准确性。然而,DIA 方法的一个限制特征是低丰度蛋白质的检测灵敏度和覆盖深度,其他质谱方法通过二维分馏(2D)来解决,以在数据采集过程中降低样品复杂性。在这项研究中,我们开发了一种 2D-DIA 方法,与传统的 1D-DIA 分析相比,该方法旨在进行快速和更深层次的蛋白质组分析。首先,我们使用依赖于数据的方法(DDA)对来自 NCI-7 的 96 个单个馏分进行了表征,从 11,273 个蛋白质组中鉴定出了总共 151,366 个独特肽。我们观察到,大多数蛋白质可以仅从几个选定的馏分中鉴定出来。通过进行优化分析,我们确定了六个具有高肽数量和独特性的馏分,它们可以占整个实验中鉴定出的蛋白质的 80%。这些选定的馏分被组合成一个单一的样品,然后进行 DIA(称为 2D-DIA)定量分析。此外,通过使用混合光谱库实现了改进的 DIA 定量,该混合光谱库是通过将 DDA 数据中鉴定的肽与在 DIA 运行中直接从 DIA 运行中鉴定的肽结合起来,在 DIA-Umpire 的帮助下获得的。与传统的未分级 DIA 分析(1D-DIA)相比,优化后的 2D-DIA 方法允许更好地鉴定和定量低丰度蛋白质。然后,我们将 2D-DIA 方法应用于两种乳腺癌患者来源异种移植(PDX)模型的蛋白质组分析,分别在基底和腔肿瘤中定量了 6,217 和 6,167 个独特蛋白质。总的来说,这项研究展示了使用新型 2D-DIA 方法进行高通量定量蛋白质组学的潜力。

相似文献

10

引用本文的文献

本文引用的文献

8
Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.Q Exactive HF-X 在 shotgun 蛋白质组学中的性能评估。
J Proteome Res. 2018 Jan 5;17(1):727-738. doi: 10.1021/acs.jproteome.7b00602. Epub 2017 Dec 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验