Wang Yuefan, Lih Tung-Shing Mamie, Chen Lijun, Xu Yuanwei, Kuczler Morgan D, Cao Liwei, Pienta Kenneth J, Amend Sarah R, Zhang Hui
Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.
Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
Clin Proteomics. 2022 Jul 9;19(1):24. doi: 10.1186/s12014-022-09359-9.
Single-cell proteomic analysis provides valuable insights into cellular heterogeneity allowing the characterization of the cellular microenvironment which is difficult to accomplish in bulk proteomic analysis. Currently, single-cell proteomic studies utilize data-dependent acquisition (DDA) mass spectrometry (MS) coupled with a TMT labelled carrier channel. Due to the extremely imbalanced MS signals among the carrier channel and other TMT reporter ions, the quantification is compromised. Thus, data-independent acquisition (DIA)-MS should be considered as an alternative approach towards single-cell proteomic study since it generates reproducible quantitative data. However, there are limited reports on the optimal workflow for DIA-MS-based single-cell analysis.
We report an optimized DIA workflow for single-cell proteomics using Orbitrap Lumos Tribrid instrument. We utilized a breast cancer cell line (MDA-MB-231) and induced drug resistant polyaneuploid cancer cells (PACCs) to evaluate our established workflow.
We found that a short LC gradient was preferable for peptides extracted from single cell level with less than 2 ng sample amount. The total number of co-searching peptide precursors was also critical for protein and peptide identifications at nano- and sub-nano-gram levels. Post-translationally modified peptides could be identified from a nano-gram level of peptides. Using the optimized workflow, up to 1500 protein groups were identified from a single PACC corresponding to 0.2 ng of peptides. Furthermore, about 200 peptides with phosphorylation, acetylation, and ubiquitination were identified from global DIA analysis of 100 cisplatin resistant PACCs (20 ng). Finally, we used this optimized DIA approach to compare the whole proteome of MDA-MB-231 parental cells and induced PACCs at a single-cell level. We found the single-cell level comparison could reflect real protein expression changes and identify the protein copy number.
Our results demonstrate that the optimized DIA pipeline can serve as a reliable quantitative tool for single-cell as well as sub-nano-gram proteomic analysis.
单细胞蛋白质组学分析为细胞异质性提供了有价值的见解,能够对细胞微环境进行表征,而这在整体蛋白质组学分析中难以实现。目前,单细胞蛋白质组学研究采用数据依赖型采集(DDA)质谱(MS)结合TMT标记的载体通道。由于载体通道与其他TMT报告离子之间的质谱信号极度不平衡,定量受到影响。因此,数据非依赖型采集(DIA)-MS应被视为单细胞蛋白质组学研究的一种替代方法,因为它能产生可重复的定量数据。然而,关于基于DIA-MS的单细胞分析的最佳工作流程的报道有限。
我们报告了一种使用Orbitrap Lumos Tribrid仪器的单细胞蛋白质组学优化DIA工作流程。我们利用乳腺癌细胞系(MDA-MB-231)和诱导产生的耐药多倍体癌细胞(PACC)来评估我们建立的工作流程。
我们发现,对于从单细胞水平提取的、样品量少于2 ng的肽段,较短的液相色谱梯度更为合适。共搜索肽前体的总数对于纳克和亚纳克水平的蛋白质和肽段鉴定也至关重要。翻译后修饰的肽段可从纳克水平的肽段中鉴定出来。使用优化后的工作流程,从单个对应于0.2 ng肽段的PACC中鉴定出多达1500个蛋白质组。此外,从100个顺铂耐药PACC(20 ng)的全局DIA分析中鉴定出约200个具有磷酸化、乙酰化和泛素化修饰的肽段。最后,我们使用这种优化后的DIA方法在单细胞水平比较MDA-MB-231亲本细胞和诱导产生的PACC的全蛋白质组。我们发现单细胞水平的比较能够反映真实的蛋白质表达变化并鉴定蛋白质拷贝数。
我们的结果表明,优化后的DIA流程可作为单细胞以及亚纳克蛋白质组学分析的可靠定量工具。