Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
Center for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia.
Biochemistry. 2020 Mar 10;59(9):1038-1050. doi: 10.1021/acs.biochem.0c00027. Epub 2020 Feb 24.
The cytochrome P450 superfamily of heme monooxygenases catalyzes important chemical reactions across nature. The changes in the optical spectra of these enzymes, induced by the addition of substrates or inhibitors, are critical for assessing how these molecules bind to the P450, enhancing or inhibiting the catalytic cycle. Here we use the bacterial CYP199A4 enzyme (Uniprot entry Q2IUO2), from HaA2, and a range of substituted benzoic acids to investigate different binding modes. 4-Methoxybenzoic acid elicits an archetypal type I spectral response due to a ≥95% switch from the low- to high-spin state with concomitant dissociation of the sixth aqua ligand. 4-(Pyridin-3-yl)- and 4-(pyridin-2-yl)benzoic acid induced different type II ultraviolet-visible (UV-vis) spectral responses in CYP199A4. The former induced a greater red shift in the Soret wavelength (424 nm vs 422 nm) along with a larger overall absorbance change and other differences in the α-, β-, and δ-bands. There were also variations in the ferrous UV-vis spectra of these two substrate-bound forms with a spectrum indicative of Fe-N bond formation with 4-(pyridin-3-yl)benzoic acid. The crystal structures of CYP199A4, with the pyridinyl compounds bound, revealed that while the nitrogen of 4-(pyridin-3-yl)benzoic acid is coordinated to the heme, with 4-(pyridin-2-yl)benzoic acid an aqua ligand remains. Continuous wave and pulse electron paramagnetic resonance data in frozen solution revealed that the substrates are bound in the active site in a form consistent with the crystal structures. The redox potential of each CYP199A4-substrate combination was measured, allowing correlation among binding modes, spectroscopic properties, and the observed biochemical activity.
细胞色素 P450 超家族的血红素单加氧酶催化自然界中重要的化学反应。这些酶的光学光谱的变化,由底物或抑制剂的加入诱导,对于评估这些分子如何与 P450 结合,增强或抑制催化循环至关重要。在这里,我们使用细菌 CYP199A4 酶(Uniprot 条目 Q2IUO2),来自 HaA2,以及一系列取代的苯甲酸来研究不同的结合模式。4-甲氧基苯甲酸由于从低自旋态到高自旋态的转变,以及第六个水合配体的解离,引发了典型的 I 型光谱响应。4-(吡啶-3-基)-和 4-(吡啶-2-基)苯甲酸在 CYP199A4 中引起不同的 II 型紫外可见(UV-vis)光谱响应。前者在 Soret 波长(424nm 对 422nm)引起更大的红移,同时具有更大的总吸光度变化和 α-、β-和 δ-带的其他差异。这两种底物结合形式的亚铁紫外可见光谱也存在差异,其中 4-(吡啶-3-基)苯甲酸的光谱表明 Fe-N 键形成。与吡啶基化合物结合的 CYP199A4 的晶体结构表明,虽然 4-(吡啶-3-基)苯甲酸的氮与血红素配位,但 4-(吡啶-2-基)苯甲酸仍保持水合配体。在冷冻溶液中连续波和脉冲电子顺磁共振数据表明,底物以与晶体结构一致的形式结合在活性部位。测量了每个 CYP199A4-底物组合的氧化还原电位,允许在结合模式、光谱性质和观察到的生化活性之间进行关联。