Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48202, United States.
J Proteome Res. 2020 Apr 3;19(4):1635-1646. doi: 10.1021/acs.jproteome.9b00840. Epub 2020 Feb 27.
Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. Several advanced algorithms are now available to identify SAAVs, but attempts to combine different algorithms and optimize them on large data sets to achieve a more comprehensive coverage of SAAVs have not been implemented. Herein, we report an expanded detection of SAAVs in the PANC-1 cell line using three different strategies, which results in the identification of 540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as deleterious SAAVs based on analysis using the novel AssVar software in which one of the driver mutations found in each protein of KRAS, TP53, and SLC37A4 is further validated using independent selected reaction monitoring (SRM) analysis. Our study represents the most comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in pancreatic cancer and personal immunotherapy and treatment.
鉴定癌症中的单个氨基酸变异(SAAV)对于精准肿瘤学至关重要。现在已经有几种先进的算法可用于鉴定 SAAV,但尚未尝试将不同的算法结合起来并在大数据集上进行优化,以实现更全面的 SAAV 覆盖。在此,我们报告了使用三种不同策略在 PANC-1 细胞系中扩展 SAAV 的检测,这导致在质谱数据中鉴定出 540 个 SAAV。在这 540 个 SAAV 中,根据使用新型 AssVar 软件进行的分析,有 79 个被评估为有害 SAAV,其中在 KRAS、TP53 和 SLC37A4 的每种蛋白质中发现的一个驱动突变进一步通过独立选择反应监测(SRM)分析进行验证。我们的研究代表了迄今为止最全面的 SAAV 发现,也是首次在 PANC-1 细胞系中大规模检测有害 SAAV。这项工作可能为未来的胰腺癌和个性化免疫治疗和治疗研究提供基础。