Gambetta F M, Li W, Schmidt-Kaler F, Lesanovsky I
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Phys Rev Lett. 2020 Jan 31;124(4):043402. doi: 10.1103/PhysRevLett.124.043402.
Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focusing specifically on a system of ^{87}Rb atoms, we show that the effects of the multibody interactions can be maximized via a tailored dressed potential within a trapping frequency range of the order of a few hundred kilohertz and for temperatures corresponding to a >90% occupation of the atomic vibrational ground state. These parameters, as well as the multibody induced timescales, are compatible with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multibody interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum simulators.
耦合光学镊子阵列中里德堡原子的电子和振动自由度,为创建和控制原子间相互作用提供了一种灵活的机制。我们发现,里德堡原子与本地振荡器模式之间的状态依赖耦合会产生两体和三体相互作用,这些相互作用可通过局部限制的强度来控制。这种方法甚至允许消除两体项,从而使三体相互作用占主导地位。我们分析了二维二分晶格几何结构上这些相互作用的结构,并探讨了三体相互作用对方形晶格上系统基态的影响。具体针对(^{87}Rb)原子系统,我们表明,通过在几百千赫兹量级的捕获频率范围内以及对应于原子振动基态占有率(>90%)的温度下的定制修饰势,可以使多体相互作用的效果最大化。这些参数以及多体诱导的时间尺度与最先进的光学镊子阵列兼容。我们的工作展示了一种高度通用的手段,用于在里德堡晶格量子模拟器的最新表现形式中设计量子多体系统的多体相互作用。