Suppr超能文献

Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference.

作者信息

Chua Alvin J K, Vallisneri Michele

机构信息

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.

出版信息

Phys Rev Lett. 2020 Jan 31;124(4):041102. doi: 10.1103/PhysRevLett.124.041102.

Abstract

We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验