Aganyants Hovsep, Weigel Pierre, Hovhannisyan Yeranuhi, Lecocq Michèle, Koloyan Haykanush, Hambardzumyan Artur, Hovsepyan Anichka, Hallet Jean-Noël, Sakanyan Vehary
SPC Armbiotechnology, National Academy of Sciences of Republic of Armenia, 0056 Yerevan, Armenia.
UFIP CNRS 6286, Faculté de Biologie, Université de Nantes, 44322 Nantes, France.
High Throughput. 2020 Feb 12;9(1):5. doi: 10.3390/ht9010005.
D-hydantoinases catalyze an enantioselective opening of 5- and 6-membered cyclic structures and therefore can be used for the production of optically pure precursors for biomedical applications. The thermostable D-hydantoinase from ATCC 31783 is a manganese-dependent enzyme and exhibits low activity towards bulky hydantoin derivatives. Homology modeling with a known 3D structure (PDB code: 1K1D) allowed us to identify the amino acids to be mutated at the substrate binding site and in its immediate vicinity to modulate the substrate specificity. Both single and double substituted mutants were generated by site-directed mutagenesis at appropriate sites located inside and outside of the stereochemistry gate loops (SGL) involved in the substrate binding. Substrate specificity and kinetic constant data demonstrate that the replacement of Phe159 and Trp287 with alanine leads to an increase in the enzyme activity towards D,L-5-benzyl and D,L-5-indolylmethyl hydantoins. The length of the side chain and the hydrophobicity of substrates are essential parameters to consider when designing the substrate binding pocket for bulky hydantoins. Our data highlight that D-hydantoinase is the authentic dihydropyrimidinase involved in the pyrimidine reductive catabolic pathway in moderate thermophiles.
D-海因酶催化5元和6元环状结构的对映选择性开环反应,因此可用于生产用于生物医学应用的光学纯前体。来自ATCC 31783的耐热D-海因酶是一种依赖锰的酶,对庞大的海因衍生物表现出低活性。通过与已知三维结构(PDB代码:1K1D)进行同源建模,我们能够确定在底物结合位点及其紧邻区域发生突变的氨基酸,以调节底物特异性。通过定点诱变在参与底物结合的立体化学门环(SGL)内外的适当位点生成单取代和双取代突变体。底物特异性和动力学常数数据表明,用丙氨酸取代苯丙氨酸159和色氨酸287会导致酶对D,L-5-苄基海因和D,L-5-吲哚甲基海因的活性增加。在设计庞大海因的底物结合口袋时,底物侧链的长度和疏水性是需要考虑的重要参数。我们的数据突出表明,D-海因酶是参与中度嗜热菌嘧啶还原分解代谢途径的真正二氢嘧啶酶。