Suppr超能文献

完整人体器官的细胞和分子探测。

Cellular and Molecular Probing of Intact Human Organs.

机构信息

Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany.

Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany.

出版信息

Cell. 2020 Feb 20;180(4):796-812.e19. doi: 10.1016/j.cell.2020.01.030. Epub 2020 Feb 13.

Abstract

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.

摘要

光学组织透明化使得对 3D 复杂组织进行可扩展的细胞和分子研究成为可能。由于在数十年的组织中积累了密集和坚固的分子,成人器官特别难以呈现透明状态。为了克服这些挑战,我们开发了 SHANEL 方法,该方法基于一种新的组织通透化方法,可清除和标记坚硬的人体器官。我们使用 SHANEL 使完整的成人大脑和肾脏透明,并使用抗体和染料在几厘米深的地方进行 3D 组织学研究。由此,我们以细胞分辨率揭示了完整的人眼、人甲状腺、人肾脏和转基因猪胰腺的结构细节。此外,我们开发了一个深度学习管道,可以在数小时内用标准实验室计算机分析清除的人脑组织中的数百万个细胞。总的来说,SHANEL 是一种强大且无偏的技术,可以绘制大型完整哺乳动物器官的细胞和分子结构图谱。

相似文献

1
Cellular and Molecular Probing of Intact Human Organs.
Cell. 2020 Feb 20;180(4):796-812.e19. doi: 10.1016/j.cell.2020.01.030. Epub 2020 Feb 13.
2
Scalable tissue labeling and clearing of intact human organs.
Nat Protoc. 2022 Oct;17(10):2188-2215. doi: 10.1038/s41596-022-00712-8. Epub 2022 Jul 20.
3
3D molecular phenotyping of cleared human brain tissues with light-sheet fluorescence microscopy.
Commun Biol. 2022 May 12;5(1):447. doi: 10.1038/s42003-022-03390-0.
4
Recent progress in optical clearing of eye tissues.
Exp Eye Res. 2021 Nov;212:108796. doi: 10.1016/j.exer.2021.108796. Epub 2021 Oct 15.
5
Imaging cleared intact biological systems at a cellular level by 3DISCO.
J Vis Exp. 2014 Jul 7(89):51382. doi: 10.3791/51382.
6
Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.
Breast Cancer Res. 2016 Dec 13;18(1):127. doi: 10.1186/s13058-016-0754-9.
7
Click3D: Click reaction across deep tissues for whole-organ 3D fluorescence imaging.
Sci Adv. 2024 Jul 19;10(29):eado8471. doi: 10.1126/sciadv.ado8471. Epub 2024 Jul 17.
8
Phenotyping Intact Mouse Bones Using Bone CLARITY.
Methods Mol Biol. 2021;2230:217-230. doi: 10.1007/978-1-0716-1028-2_13.

引用本文的文献

3
Advances in tissue optical clearing for 3D imaging in large animal.
Front Optoelectron. 2025 Aug 18;18(1):18. doi: 10.1007/s12200-025-00162-6.
6
The Human Organ Atlas.
bioRxiv. 2025 Aug 1:2025.07.31.667856. doi: 10.1101/2025.07.31.667856.
7
Spiner, deep learning-based automated detection of spiral ganglion neurons in intact cochleae.
iScience. 2025 Jun 18;28(7):112929. doi: 10.1016/j.isci.2025.112929. eCollection 2025 Jul 18.
8
Organ-specific features of human kidney lymphatics are disrupted in chronic transplant rejection.
J Clin Invest. 2025 Jul 15;135(18). doi: 10.1172/JCI168962. eCollection 2025 Sep 16.

本文引用的文献

1
DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes.
Front Neurosci. 2020 Dec 8;14:592352. doi: 10.3389/fnins.2020.592352. eCollection 2020.
2
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue.
Nat Methods. 2019 Nov;16(11):1105-1108. doi: 10.1038/s41592-019-0554-0. Epub 2019 Sep 16.
5
Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction.
Nat Methods. 2019 Dec;16(12):1215-1225. doi: 10.1038/s41592-019-0458-z. Epub 2019 Jul 8.
6
Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis.
Kidney Int. 2019 Aug;96(2):505-516. doi: 10.1016/j.kint.2019.02.034. Epub 2019 Mar 15.
7
Deep learning for cellular image analysis.
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
8
Light-sheet microscopy in the near-infrared II window.
Nat Methods. 2019 Jun;16(6):545-552. doi: 10.1038/s41592-019-0398-7. Epub 2019 May 13.
9
Seeing whole-tumour heterogeneity.
Nat Biomed Eng. 2017 Oct;1(10):772-774. doi: 10.1038/s41551-017-0150-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验