Benda Robert, Zucchi Gaël, Cancès Eric, Lebental Bérengère
LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route De Saclay, 91128 Palaiseau, France.
CERMICS, Ecole des Ponts and INRIA, Université Paris-Est, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
J Chem Phys. 2020 Feb 14;152(6):064708. doi: 10.1063/1.5133634.
We investigate the interaction of polyfluorene and fluorene/carbazole copolymers bearing various functional groups and side chains with small to large diameter-from 1.7 nm to 9 nm-carbon nanotubes (CNTs) in vacuo. We use variable-charge molecular dynamics simulations based on the reactive force field ReaxFF. We show that non-covalent functionalization of nanotubes, driven by π - π interactions, is effective for all the polymers studied, thanks to their conjugated backbone and regardless of the presence of specific functional groups. The geometry at equilibrium of these polymer/CNT hybrids is analyzed in detail at the scale of each fluorene or carbazole unit. The role of both the functional groups and the alkyl chain length is analyzed in detail. Adsorption of the polymers on the nanotube sidewalls is shown to be either complete-with the whole chain physisorbed-or partial-due to intrachain coiling or interchain repulsion-depending on the initial geometry, number of polymers, and nanotube diameter. Energetic arguments supplement the described geometric features. Both energetic and geometric adsorption features are derived here for the first time for large diameter carbon nanotubes (up to 9 nm) and fluorene/carbazole copolymers having up to 30 monomers and bearing different functional groups. The force field ReaxFF and its available parameterization used for the simulations are validated, thanks to a benchmark and review on higher-level quantum calculations-for simple π - π interacting compounds made up of polycyclic aromatic molecules adsorbed on a graphene sheet or bilayer graphene. Although it is shown that the influence of the nanotube chirality on the adsorption pattern and binding strength cannot be discussed with our method, we highlight that an available force field such as ReaxFF and its parameterization can be transferable to simulate new systems without specific re-parameterization, provided that this model is validated against reference methods or data. This methodology proves to be a valuable tool for optimal polymer design for nanotube functionalization at no re-parameterization cost and could be adapted to simulate and assist the design of other types of molecular systems.
我们在真空中研究了带有各种官能团和侧链的聚芴以及芴/咔唑共聚物与直径从小(1.7纳米)到大(9纳米)的碳纳米管(CNT)之间的相互作用。我们使用基于反应力场ReaxFF的可变电荷分子动力学模拟。我们表明,由于聚合物的共轭主链,无论是否存在特定官能团,由π-π相互作用驱动的纳米管非共价功能化对所有研究的聚合物都是有效的。在每个芴或咔唑单元的尺度上详细分析了这些聚合物/碳纳米管杂化物的平衡几何结构。详细分析了官能团和烷基链长度的作用。结果表明,聚合物在纳米管侧壁上的吸附可能是完全的——整个链通过物理吸附——也可能是部分的——由于链内盘绕或链间排斥——这取决于初始几何结构、聚合物数量和纳米管直径。能量论据补充了所描述的几何特征。本文首次推导了大直径碳纳米管(直径达9纳米)和含有多达30个单体并带有不同官能团的芴/咔唑共聚物的能量和几何吸附特征。通过对由吸附在石墨烯片或双层石墨烯上的多环芳烃分子组成的简单π-π相互作用化合物进行的基准测试和高级量子计算综述,验证了用于模拟的力场ReaxFF及其可用参数化。尽管结果表明我们的方法无法讨论纳米管手性对吸附模式和结合强度的影响,但我们强调,只要该模型针对参考方法或数据进行了验证,像ReaxFF这样的可用力场及其参数化可以转移到模拟新系统,而无需进行特定的重新参数化。这种方法被证明是一种有价值工具,可用于在不进行重新参数化成本的情况下优化用于纳米管功能化的聚合物设计,并且可以适用于模拟和辅助设计其他类型的分子系统。