Cho Gookbin, Grinenval Eva, Gabriel Jean-Christophe P, Lebental Bérengère
Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique Paris, 91128 Palaiseau, France.
LICSEN, NIMBE (UMR CEA/CNRS 3685), Université Paris-Saclay, 91191 Gif sur Yvette, France.
Nanomaterials (Basel). 2023 Mar 24;13(7):1157. doi: 10.3390/nano13071157.
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate (PBS) and borate (BBS) buffer solutions, the p-CNTFETs exhibit a p-type operation while f-CNTFETs exhibit p-type behavior in BBS and ambipolarity in PBS. The sensitivity to pH is evaluated by measuring the drain current at a gate and drain voltage of -0.8 V. In PBS, p-CNTFETs show a linear, reversible pH response between pH 3 and pH 9 with a sensitivity of 26 ± 2.2%/pH unit; while f-CNTFETs have a much stronger, reversible pH response (373%/pH unit), but only over the range of pH 7 to pH 9. In BBS, both p-CNTFET and f-CNTFET show a linear pH response between pH 5 and 9, with sensitivities of 56%/pH and 96%/pH, respectively. Analysis of the I-V curves as a function of pH suggests that the increased pH sensitivity of f-CNTFET is consistent with interactions of FF-UR with phosphate ions in PBS and boric acid in BBS, with the ratio and charge of the complexed species depending on pH. The complexation affects the efficiency of electrolyte gating and the surface charge around the CNT, both of which modify the I-V response of the CNTFET, leading to the observed current sensitivity as a function of pH. The performances of p-CNTFET in PBS are comparable to the best results in the literature, while the performances of the f-CNTFET far exceed the current state-of-the-art by a factor of four in BBS and more than 10 over a limited range of pH in BBS. This is the first time that a functionalization other than carboxylate moieties has significantly improved the state-of-the-art of pH sensing with CNTFET or CNT chemistors. On the other hand, this study also highlights the challenge of transferring this performance to a real water matrix, where many different species may compete for interactions with FF-UR.
我们比较了非功能化碳纳米管(CNT)场效应晶体管(p-CNTFET)和用带有脲基部分的共轭聚芴聚合物(标记为FF-UR)功能化的CNTFET(f-CNTFET)的pH传感性能。这些器件是电解质门控、聚甲基丙烯酸甲酯钝化、具有未分类的喷墨打印单壁碳纳米管的5 µm沟道FET。在磷酸盐(PBS)和硼酸盐(BBS)缓冲溶液中,p-CNTFET表现出p型操作,而f-CNTFET在BBS中表现出p型行为,在PBS中表现出双极性。通过在栅极和漏极电压为-0.8 V时测量漏极电流来评估对pH的敏感性。在PBS中,p-CNTFET在pH 3至pH 9之间显示出线性、可逆的pH响应,灵敏度为26±2.2%/pH单位;而f-CNTFET具有更强的可逆pH响应(373%/pH单位),但仅在pH 7至pH 9范围内。在BBS中,p-CNTFET和f-CNTFET在pH 5至9之间均显示出线性pH响应,灵敏度分别为56%/pH和96%/pH。作为pH函数的I-V曲线分析表明,f-CNTFET增加的pH敏感性与FF-UR与PBS中的磷酸根离子和BBS中的硼酸的相互作用一致,络合物种的比例和电荷取决于pH。络合作用影响电解质门控的效率和碳纳米管周围的表面电荷,这两者都会改变CNTFET的I-V响应,从而导致观察到的电流敏感性作为pH的函数。p-CNTFET在PBS中的性能与文献中的最佳结果相当,而f-CNTFET的性能在BBS中比当前的技术水平高出四倍,在BBS中有限的pH范围内高出十多倍。这是首次除羧酸盐部分以外的功能化显著提高了CNTFET或CNT化学传感器的pH传感技术水平。另一方面,这项研究也凸显了将这种性能转移到实际水基质中的挑战,在实际水基质中,许多不同的物种可能会竞争与FF-UR的相互作用。