Suppr超能文献

利用空间回归模型识别控制郊区土壤重金属空间变异的影响因素。

Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models.

机构信息

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China; Key Laboratory of Geographic Information System of Ministry of Education, Wuhan University, Wuhan 430079, China.

出版信息

Sci Total Environ. 2020 May 15;717:137212. doi: 10.1016/j.scitotenv.2020.137212. Epub 2020 Feb 8.

Abstract

Determining the factors that control the spatial variation of heavy metals in suburban soil is important in identifying and preventing pollution sources. Soil intrinsic factors combined with environmental variables can effectively explain the spatial distribution of heavy metals. Compared with classical statistical methods, such as multiple linear regression (MLR) models, spatial regression models that can cope with the spatial dependence of heavy metals have greater potential in establishing an accurate relationship between influencing factors and heavy metals. This study aims to identify the factors that influence the spatial variation of lead (Pb) and cadmium (Cd) in 138 topsoil samples from the suburbs of Wuhan City, China, by using spatial regression models with MLR as the reference. Moran's I values reveal the spatial autocorrelation of Pb and Cd. The spatial lag model (SLM) outperforms MLR and has higher R and lower spatial dependence of residuals. The significant coefficients of the spatial lag term in SLMs indicate that the spatial variation of Pb and Cd depends on their surrounding observations. SLM results show that Pb content depends on the distance from the nearest industrial enterprises and suggest that industrial pollution is the main source of Pb. Cd content depends on pH, soil organic matter, and the topographic wetness index, indicating that intrinsic and topographical factors contribute to the spatial variation of Cd. Parent materials and application of phosphorus fertilizer are the most likely sources of Cd. The findings highlight the spatial autocorrelation of heavy metals and the effects of intrinsic factors and environmental variables on the spatial variation of such metals. Moreover, this study reveals the effectiveness of spatial regression models in identifying the influencing factors of heavy metals.

摘要

确定控制郊区土壤中重金属空间变异的因素对于识别和防止污染源至关重要。土壤内在因素与环境变量相结合,可以有效地解释重金属的空间分布。与经典的统计方法(如多元线性回归(MLR)模型)相比,能够应对重金属空间相关性的空间回归模型在建立影响因素与重金属之间的准确关系方面具有更大的潜力。本研究旨在通过使用空间回归模型(以 MLR 作为参考),确定中国武汉市郊区 138 个表层土壤样本中铅(Pb)和镉(Cd)空间变异的影响因素。Moran's I 值揭示了 Pb 和 Cd 的空间自相关。空间滞后模型(SLM)优于 MLR,具有更高的 R 值和更低的残差空间依赖性。SLM 中空间滞后项的显著系数表明 Pb 和 Cd 的空间变异取决于其周围的观测值。SLM 结果表明,Pb 含量取决于与最近的工业企业的距离,表明工业污染是 Pb 的主要来源。Cd 含量取决于 pH 值、土壤有机质和地形湿度指数,表明内在和地形因素导致 Cd 的空间变异。母质和磷肥的施用是 Cd 的最可能来源。研究结果突出了重金属的空间自相关性以及内在因素和环境变量对这些金属空间变异的影响。此外,本研究揭示了空间回归模型在识别重金属影响因素方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验