Suppr超能文献

识别和验证接受免疫抑制治疗的 IgA 肾病患者的获益情况。

Identification and external validation of IgA nephropathy patients benefiting from immunosuppression therapy.

机构信息

National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China.

IBM Research - China, Beijing, China.

出版信息

EBioMedicine. 2020 Feb;52:102657. doi: 10.1016/j.ebiom.2020.102657. Epub 2020 Feb 12.

Abstract

BACKGROUND

Although IgA nephropathy (IgAN), an immune-mediated disease with heterogeneous clinical and pathological phenotypes, is the most common glomerulonephritis worldwide, it remains unclear which IgAN patients benefit from immunosuppression (IS) therapy.

METHODS

Clinical and pathological data from 4047 biopsy-proven IgAN patients from 24 renal centres in China were included. The derivation and validation cohorts were composed of 2058 and 1989 patients, respectively. Model-based recursive partitioning, a machine learning approach, was performed to partition patients in the derivation cohort into subgroups with different IS long-term benefits, associated with time to end-stage kidney disease, measured by adjusted Kaplan-Meier estimator and adjusted hazard ratio (HR) using Cox regression.

FINDINGS

Three identified subgroups obtained a significant IS benefits with HRs ≤ 1. In patients with serum creatinine ≤ 1·437 mg/dl, the benefits of IS were observed in those with proteinuria > 1·525 g/24h (node 6; HR = 0·50; 95% CI, 0·29 to 0·89; P = 0·02), especially in those with proteinuria > 2·480 g/24h (node 8; HR =  0·23; 95% CI, 0·11 to 0·50; P <0·001). In patients with serum creatinine > 1·437 mg/dl, those with high proteinuria and crescents benefitted from IS (node 12; HR = 0·29; 95% CI, 0·09 to 0·94; P = 0·04). The treatment benefits were externally validated in the validation cohort.

INTERPRETATION

Machine learning could be employed to identify subgroups with different IS benefits. These efforts promote decision-making, assist targeted clinical trial design, and shed light on individualised treatment in IgAN patients.

FUNDING

National Key Research and Development Program of China (2016YFC0904103), National Key Technology R&D Program (2015BAI12B02).

摘要

背景

尽管 IgA 肾病(IgAN)是一种具有异质性临床和病理表型的免疫介导疾病,是全球最常见的肾小球肾炎,但仍不清楚哪些 IgAN 患者受益于免疫抑制(IS)治疗。

方法

纳入了来自中国 24 个肾脏中心的 4047 例经活检证实的 IgAN 患者的临床和病理数据。推导和验证队列分别由 2058 名和 1989 名患者组成。使用基于模型的递归分区,一种机器学习方法,将推导队列中的患者分为具有不同 IS 长期获益的亚组,这与通过调整的 Kaplan-Meier 估计和 Cox 回归分析的调整危险比(HR)测量的终末期肾病的时间有关。

发现

在血清肌酐≤1.437mg/dl 的患者中,发现蛋白尿>1.525g/24h(节点 6;HR=0.50;95%CI,0.29 至 0.89;P=0.02)和蛋白尿>2.480g/24h(节点 8;HR=0.23;95%CI,0.11 至 0.50;P<0.001)的患者中存在 IS 获益。在血清肌酐>1.437mg/dl 的患者中,高蛋白尿和新月体肾炎患者受益于 IS(节点 12;HR=0.29;95%CI,0.09 至 0.94;P=0.04)。在验证队列中进行了治疗效果的外部验证。

解释

机器学习可用于识别具有不同 IS 获益的亚组。这些努力有助于决策制定,辅助靶向临床试验设计,并为 IgAN 患者的个体化治疗提供思路。

资助

国家重点研发计划(2016YFC0904103),国家重点研发计划(2015BAI12B02)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d584/7016365/9d509fdeb0d2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验