Department of Biostatistics and Medical Informatics, UW-Madison, Madison, WI.
Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Crit Care Med. 2024 Sep 1;52(9):1439-1450. doi: 10.1097/CCM.0000000000006371. Epub 2024 Aug 15.
Critical care trials evaluate the effect of interventions in patients with diverse personal histories and causes of illness, often under the umbrella of heterogeneous clinical syndromes, such as sepsis or acute respiratory distress syndrome. Given this variation, it is reasonable to expect that the effect of treatment on outcomes may differ for individuals with variable characteristics. However, in randomized controlled trials, efficacy is typically assessed by the average treatment effect (ATE), which quantifies the average effect of the intervention on the outcome in the study population. Importantly, the ATE may hide variations of the treatment's effect on a clinical outcome across levels of patient characteristics, which may erroneously lead to the conclusion that an intervention does not work overall when it may in fact benefit certain patients. In this review, we describe methodological approaches for assessing heterogeneity of treatment effect (HTE), including expert-derived subgrouping, data-driven subgrouping, baseline risk modeling, treatment effect modeling, and individual treatment rule estimation. Next, we outline how insights from HTE analyses can be incorporated into the design of clinical trials. Finally, we propose a research agenda for advancing the field and bringing HTE approaches to the bedside.
重症监护试验评估了在具有不同个人病史和疾病原因的患者中干预措施的效果,这些患者通常属于诸如脓毒症或急性呼吸窘迫综合征等异质临床综合征的范畴。鉴于这种变化,我们有理由预期,治疗对结局的影响可能因个体特征的变化而有所不同。然而,在随机对照试验中,疗效通常通过平均治疗效果(ATE)来评估,它量化了干预措施对研究人群中结局的平均影响。重要的是,ATE 可能掩盖了治疗效果在患者特征水平上的变化,这可能错误地导致结论认为干预措施总体上无效,而实际上它可能对某些患者有益。在这篇综述中,我们描述了评估治疗效果异质性(HTE)的方法学方法,包括专家衍生的亚组分析、数据驱动的亚组分析、基线风险建模、治疗效果建模和个体治疗规则估计。接下来,我们概述了如何将 HTE 分析的见解纳入临床试验设计中。最后,我们提出了一个研究议程,旨在推进该领域的发展,并将 HTE 方法应用于临床。