Meier Christian B, Clowes Rob, Berardo Enrico, Jelfs Kim E, Zwijnenburg Martijn A, Sprick Reiner Sebastian, Cooper Andrew I
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, U.K.
Chem Mater. 2019 Nov 12;31(21):8830-8838. doi: 10.1021/acs.chemmater.9b02825. Epub 2019 Sep 27.
A structurally diverse family of 39 covalent triazine-based framework materials (CTFs) are synthesized by Suzuki-Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[,]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance. The electron affinity and dispersibility in solution are found to be the best predictors of photocatalytic hydrogen evolution activity.
通过铃木-宫浦缩聚反应合成了一个由39种结构多样的共价三嗪基骨架材料(CTF)组成的家族,并使用高通量流程将其作为析氢光催化剂进行测试。两种性能最佳的CTF分别基于苯甲腈和二苯并噻吩砜连接体,其催化活性在该材料类别中处于最高水平。根据四个变量对不同CTF的活性进行了合理化分析:预测的电子亲和能、预测的电离势、光学带隙以及通过光学透射率测量的CTF颗粒在溶液中的分散性。发现电子亲和能和在溶液中的分散性是光催化析氢活性的最佳预测指标。