文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能预测DNA纳米结构上的蛋白质冠组成

AI-Based Prediction of Protein Corona Composition on DNA Nanostructures.

作者信息

Huzar Jared, Coreas Roxana, Landry Markita P, Tikhomirov Grigory

机构信息

Biophysics Graduate Group, University of California, Berkeley, Berkeley, California 94720, United States.

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

出版信息

ACS Nano. 2025 Feb 4;19(4):4333-4345. doi: 10.1021/acsnano.4c12259. Epub 2025 Jan 8.


DOI:10.1021/acsnano.4c12259
PMID:39772513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11803750/
Abstract

DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures for biophysical and biomedical applications.

摘要

DNA纳米技术已成为一种强大的方法,用于构建生物物理工具、治疗药物和诊断手段,因为它能够构建具有高度可编程性的定制纳米级结构。基于DNA碱基配对规则,可以在空间、时间和能量精度上对纳米结构的大小、形状、表面功能和结构重构进行编程,而这是其他方法难以实现的。然而,由于生物流体中蛋白质的自发吸附,DNA构建体的性质和结构会发生很大变化。这些吸附的蛋白质被称为蛋白质冠,其控制或预测仍然具有挑战性,因此,它们的功能和归宿很难设计。为了应对这些挑战,我们制备了一个多样化的DNA纳米结构文库,并研究了它们的设计特征与其蛋白质冠组成之间的关系。我们确定了对蛋白质吸附到DNA纳米结构至关重要的蛋白质特征,并开发了一种机器学习模型,该模型可以根据DNA结构的设计特征和蛋白质特性预测哪些蛋白质会在DNA纳米结构上富集。我们的工作将有助于理解和设计DNA纳米结构在生物物理和生物医学应用中的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/bd0fd0614cc8/nn4c12259_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/76fe5e524778/nn4c12259_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/28e8e4e60c2a/nn4c12259_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/3020604ea2c0/nn4c12259_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/28caa7f7c10a/nn4c12259_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/b41f1a9fc21e/nn4c12259_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/bd0fd0614cc8/nn4c12259_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/76fe5e524778/nn4c12259_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/28e8e4e60c2a/nn4c12259_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/3020604ea2c0/nn4c12259_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/28caa7f7c10a/nn4c12259_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/b41f1a9fc21e/nn4c12259_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/11803750/bd0fd0614cc8/nn4c12259_0006.jpg

相似文献

[1]
AI-Based Prediction of Protein Corona Composition on DNA Nanostructures.

ACS Nano. 2025-2-4

[2]
AI-based Prediction of Protein Corona Composition on DNA Nanostructures.

bioRxiv. 2024-8-26

[3]
Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.

Curr Top Med Chem. 2022

[4]
Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells.

ACS Appl Mater Interfaces. 2021-10-6

[5]
Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery.

Biotechnol Adv. 2022-12

[6]
Building DNA nanostructures for molecular computation, templated assembly, and biological applications.

Acc Chem Res. 2014-4-10

[7]
An Analysis of the Binding Function and Structural Organization of the Protein Corona.

J Am Chem Soc. 2020-5-13

[8]
DNA-based construction at the nanoscale: emerging trends and applications.

Nanotechnology. 2018-2-9

[9]
Mix-and-match nanobiosensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-6

[10]
The Three S's for Aptamer-Mediated Control of DNA Nanostructure Dynamics: Shape, Self-Complementarity, and Spatial Flexibility.

Chembiochem. 2018-8-10

引用本文的文献

[1]
Machine Learning and Artificial Intelligence in Nanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[2]
Predicting the protein corona on nanoparticles using random forest models with nanoparticle, protein, and experimental features.

Nanoscale Adv. 2025-7-29

[3]
Protein corona composition modulates uptake of polymeric micelles by colorectal cancer cells.

Nanoscale Adv. 2025-6-23

[4]
Next generation nanoparticle protein corona characterization methods.

Nanomedicine (Lond). 2025-4

本文引用的文献

[1]
Collective cell behaviors manipulated by synthetic DNA nanostructures.

Fundam Res. 2022-2-18

[2]
CD5L is a canonical component of circulatory IgM.

Proc Natl Acad Sci U S A. 2023-12-12

[3]
Confinement in Dual-Chain-Locked DNA Origami Nanocages Programs Marker-Responsive Delivery of CRISPR/Cas9 Ribonucleoproteins.

J Am Chem Soc. 2023-12-13

[4]
Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA.

Nat Methods. 2024-1

[5]
Differential cellular responses to FDA-approved nanomedicines: an exploration of albumin-based nanocarriers and liposomes in protein corona formation.

Nanoscale. 2023-11-16

[6]
Extraordinarily Stable Hairpin-Based Biosensors for Rapid Detection of DNA Ligases.

Biosensors (Basel). 2023-9-8

[7]
Stabilizing Polymer Coatings Alter the Protein Corona of DNA Origami and Can Be Engineered to Bias the Cellular Uptake.

ACS Polym Au. 2023-6-7

[8]
Harnessing a paper-folding mechanism for reconfigurable DNA origami.

Nature. 2023-7

[9]
The protein corona from nanomedicine to environmental science.

Nat Rev Mater. 2023-3-24

[10]
The under-appreciated world of the serpin family of serine proteinase inhibitors.

EMBO Mol Med. 2023-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索