Suppr超能文献

参数化最大熵模型预测了树木群落和种群间代谢尺度的变异性。

Parameterized maximum entropy models predict variability of metabolic scaling across tree communities and populations.

作者信息

Xu Meng

机构信息

Department of Mathematics, Pace University, 41 Park Row, New York, New York, 10038, USA.

出版信息

Ecology. 2020 Jun;101(6):e03011. doi: 10.1002/ecy.3011. Epub 2020 Apr 17.

Abstract

The maximum entropy theory of ecology (METE) applies the concept of "entropy" from information theory to predict macroecological patterns. The energetic predictions of the METE rely on predetermined metabolic scaling from external theories, and this reliance diminishes the testability of the theory. In this work, I build parameterized METE models by treating the metabolic scaling exponent as a free parameter, and I use the maximum-likelihood method to obtain empirically plausible estimates of the exponent. I test the models using the individual tree data from an oak-dominated deciduous forest in the northeastern United States and from a tropical forest in central Panama. My analysis shows that the metabolic scaling exponents predicted from the parameterized METE models deviate from that of the metabolic theory of ecology and exhibit large variation, at both community and population levels. Assemblage and population abundance may act as ecological constraints that regulate the individual-level metabolic scaling behavior. This study provides a novel example of the use of the parameterized METE models to reveal the biological processes of individual organisms. The implication and possible extensions of the parameterized METE models are discussed.

摘要

生态学最大熵理论(METE)运用信息论中的“熵”概念来预测宏观生态模式。METE的能量预测依赖于外部理论预先确定的代谢标度,而这种依赖降低了该理论的可检验性。在这项工作中,我将代谢标度指数视为自由参数构建参数化的METE模型,并使用最大似然法获得该指数的经验合理估计值。我使用来自美国东北部以橡树为主的落叶林和巴拿马中部热带森林的单株树木数据对模型进行检验。我的分析表明,从参数化METE模型预测的代谢标度指数偏离了生态代谢理论的指数,并且在群落和种群水平上都表现出很大的变异性。群落和种群丰度可能作为生态约束来调节个体水平的代谢标度行为。本研究提供了一个使用参数化METE模型揭示个体生物生物学过程的新例子。讨论了参数化METE模型的意义和可能的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验