Suppr超能文献

微通道中非牛顿血流的理论分析。

Theoretical analysis of non-Newtonian blood flow in a microchannel.

机构信息

Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, Pakistan.

Department of Mathematics, Quaid-i-Azam University Islamabad 44000, Pakistan.

出版信息

Comput Methods Programs Biomed. 2020 Jul;191:105280. doi: 10.1016/j.cmpb.2019.105280. Epub 2019 Dec 24.

Abstract

BACKGROUND

In this work the theoretical analysis is presented for a electroosmotic flow of Bingham nanofluid induced by applied electrostatic potential. The linearized Poisson-Boltzmann equation is considered in the presence of Electric double layer (EDL). A Bingham fluid model is employed to describe the rheological behavior of the non-Newtonian fluid. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. Flow characteristics are investigated by employing Debye-Huckel linearization principle. Such preferences have not been reported previously for non-Newtonian Bingham nanofluid to the best of author's knowledge.

METHOD

The transformed equations for electroosmotic flow are solved to seek values for the nanofluid velocity, concentration and temperature along the channel length.

RESULTS

The effects of key parameters like Brinkmann number, Prandtl number, Debey Huckel parameter, thermophoresis parameter, Brownian motion parameter are plotted on velocity, temperature and concentration profiles. Graphical results for the flow phenomenon are discussed briefly.

CONCLUSIONS

Non-uniformity in channel as well as yield stress τ cause velocity declaration for both positive and negative values of U. Nanofluid temperature is found an increasing function of electro osmotic parameter κ if U is positive while it is a decreasing function if U is negative. A completely reverse response is seen in case of concentration profile. The thermophoresis parameter Nt, the Brow nian motion parameter Nb and Brinkman number Br cause an enhancement in temperature. The results are new in case of U.

摘要

背景

在这项工作中,提出了一种应用静电势诱导的宾汉纳米流体电渗流的理论分析。考虑了存在双电层 (EDL) 时的线性化泊松-玻尔兹曼方程。采用宾汉流体模型来描述非牛顿流体的流变行为。在长波长和小雷诺数的假设下提出了数学公式。通过采用 Debye-Huckel 线性化原理来研究流动特性。据作者所知,以前没有针对非牛顿宾汉纳米流体报道过这种偏好。

方法

求解电渗流的变换方程,以求得纳米流体速度、浓度和温度沿通道长度的分布。

结果

绘制了关键参数(如 Brinkmann 数、Prandtl 数、Debye-Huckel 参数、热泳参数、布朗运动参数)对速度、温度和浓度分布的影响。简要讨论了流动现象的图形结果。

结论

通道的非均匀性以及屈服应力 τ导致 U 的正负值均会导致速度下降。如果 U 为正,则纳米流体温度是电渗参数 κ 的增函数;如果 U 为负,则纳米流体温度是电渗参数 κ 的减函数。在浓度分布的情况下,会出现完全相反的响应。热泳参数 Nt、布朗运动参数 Nb 和 Brinkman 数 Br 会导致温度升高。在 U 的情况下,这些结果是新的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验