Suppr超能文献

机器学习识别乳腺癌治疗后患者疼痛干扰相关的心理亚组。

Machine-learned identification of psychological subgroups with relation to pain interference in patients after breast cancer treatments.

机构信息

Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland.

Institute of Clinical Pharmacology, Goethe - University, Theodor - Stern - Kai 7, 60590, Frankfurt Am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor - Stern - Kai 7, 60590, Frankfurt Am Main, Germany.

出版信息

Breast. 2020 Apr;50:71-80. doi: 10.1016/j.breast.2020.01.042. Epub 2020 Feb 7.

Abstract

BACKGROUND

Persistent pain in breast cancer survivors is common. Psychological and sleep-related factors modulate perception, interpretation and coping with pain and may contribute to the clinical phenotype. The present analysis pursued the hypothesis that breast cancer survivors form subgroups, based on psychological and sleep-related parameters that are relevant to the impact of pain on the patients' life.

METHODS

We analysed 337 women treated for breast cancer, in whom psychological and sleep-related parameters as well as parameters related to pain intensity and interference had been acquired. Data were analysed by using supervised and unsupervised machine-learning techniques (i) to detect patient subgroups based on the pattern of psychological or sleep-related parameters, (ii) to interpret the detected cluster structure and (iii) to relate this data structure to pain interference and impact on life.

RESULTS

Artificial intelligence-based detection of data structure, implemented as self-organizing neuronal maps, identified two different clusters of patients. A smaller cluster (11.5% of the patients) had comparatively lower resilience, more depressive symptoms and lower extraversion than the other patients. In these patients, life-satisfaction, mood, and life in general were comparatively more impeded by persistent pain.

CONCLUSIONS

The results support the initial hypothesis that psychological and sleep-related parameter patterns are meaningful for subgrouping patients with respect to how persistent pain after breast cancer treatments interferes with their life. This indicates that management of pain should address more complex features than just pain intensity. Artificial intelligence is a useful tool in the identification of subgroups of patients based on psychological factors.

摘要

背景

乳腺癌幸存者常伴有持续性疼痛。心理和睡眠相关因素调节对疼痛的感知、解释和应对,可能有助于临床表型的形成。本分析旨在验证以下假设,即乳腺癌幸存者可基于与疼痛对患者生活影响相关的心理和睡眠相关参数形成亚组。

方法

我们分析了 337 名接受乳腺癌治疗的女性,获取了她们的心理和睡眠相关参数,以及与疼痛强度和干扰相关的参数。采用有监督和无监督机器学习技术对数据进行分析:(i)根据心理或睡眠相关参数模式检测患者亚组;(ii)解释所检测到的聚类结构;(iii)将该数据结构与疼痛干扰和对生活的影响联系起来。

结果

基于人工智能的数据结构检测,采用自组织神经元图实现,识别出两个不同的患者亚组。一个较小的亚组(占患者的 11.5%)的韧性、抑郁症状和外向性明显低于其他患者。在这些患者中,持续性疼痛对生活满意度、情绪和整体生活的影响较大。

结论

研究结果支持初始假设,即心理和睡眠相关参数模式对于根据乳腺癌治疗后持续性疼痛如何干扰患者生活来对患者进行亚组划分具有重要意义。这表明疼痛管理不仅要关注疼痛强度,还应考虑更复杂的因素。人工智能是基于心理因素识别患者亚组的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2e/7375580/43085cc7b09c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验