Suppr超能文献

基于机器学习的乳腺癌手术后持续性疼痛相关心理问卷项目选择。

Machine-learned selection of psychological questionnaire items relevant to the development of persistent pain after breast cancer surgery.

机构信息

Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany.

Pain Clinic, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

出版信息

Br J Anaesth. 2018 Nov;121(5):1123-1132. doi: 10.1016/j.bja.2018.06.007. Epub 2018 Jul 31.

Abstract

BACKGROUND

Prevention of persistent pain after breast cancer surgery, via early identification of patients at high risk, is a clinical need. Psychological factors are among the most consistently proposed predictive parameters for the development of persistent pain. However, repeated use of long psychological questionnaires in this context may be exhaustive for a patient and inconvenient in everyday clinical practice.

METHODS

Supervised machine learning was used to create a short form of questionnaires that would provide the same predictive performance of pain persistence as the full questionnaires in a cohort of 1000 women followed up for 3 yr after breast cancer surgery. Machine-learned predictors were first trained with the full-item set of Beck's Depression Inventory (BDI), Spielberger's State-Trait Anxiety Inventory (STAI), and the State-Trait Anger Expression Inventory (STAXI-2). Subsequently, features were selected from the questionnaires to create predictors having a reduced set of items.

RESULTS

A combined seven-item set of 10% of the original psychological questions from STAI and BDI, provided the same predictive performance parameters as the full questionnaires for the development of persistent postsurgical pain. The seven-item version offers a shorter and at least as accurate identification of women in whom pain persistence is unlikely (almost 95% negative predictive value).

CONCLUSIONS

Using a data-driven machine-learning approach, a short list of seven items from BDI and STAI is proposed as a basis for a predictive tool for the persistence of pain after breast cancer surgery.

摘要

背景

通过早期识别高危患者,预防乳腺癌手术后持续性疼痛是临床需求。心理因素是持续性疼痛发展最一致的预测参数之一。然而,在这种情况下,反复使用冗长的心理问卷可能会使患者感到疲惫不堪,在日常临床实践中也不方便。

方法

使用监督机器学习创建一种简短的问卷形式,该问卷在接受乳腺癌手术后 3 年随访的 1000 名女性队列中,与完整问卷相比,具有相同的疼痛持续预测性能。首先,使用贝克抑郁量表(BDI)、斯皮尔伯格状态-特质焦虑量表(STAI)和状态-特质愤怒表达量表(STAXI-2)的完整项目集对机器学习预测器进行训练。然后,从问卷中选择特征,创建具有较少项目的预测器。

结果

从 STAI 和 BDI 中选择 10%的原始心理问题的七个项目组合,为持续性手术后疼痛的发展提供了与完整问卷相同的预测性能参数。该七项版本提供了更短且至少同样准确的疼痛持续可能性(几乎 95%的阴性预测值)的女性识别。

结论

使用基于数据的机器学习方法,从 BDI 和 STAI 中提出了七个项目的简短列表,作为预测乳腺癌手术后疼痛持续的工具的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验