Suppr超能文献

金纳米粒子上的氢键介导的蛋白质结合和电荷重组。

H-Bonding-mediated binding and charge reorganization of proteins on gold nanoparticles.

机构信息

Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany.

CIC biomaGUNE and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Passeo de Miramón 182, 20014 Donostia-San Sebastián, Spain.

出版信息

Phys Chem Chem Phys. 2020 Feb 26;22(8):4490-4500. doi: 10.1039/c9cp06371d.

Abstract

Once introduced into the human body, nanoparticles often interact with blood proteins, which in turn undergo structural changes upon adsorption. Although protein corona formation is a widely studied phenomenon, the structure of proteins adsorbed on nanoparticles is far less understood. We propose a model to describe the interaction between human serum albumin (HSA) and nanoparticles (NPs) with arbitrary coatings. Our model takes into account the competition between protonated and unprotonated polymer ends and the curvature of the NPs. To this end, we explored the effects of surface ligands (citrate, PEG-OMe, PEG-NH2, PEG-COOH, and glycan) on gold nanoparticles (AuNPs) and the pH of the medium on structural changes in the most abundant protein in blood plasma (HSA), as well as the impact of such changes on cytotoxicity and cellular uptake. We observed a counterintuitive effect on the ζ-potential upon binding of negatively charged HSA, while circular dichroism spectroscopy at various pH values showed an unexpected pattern in the reduction of α-helix content, as a function of surface chemistry and curvature. Our model qualitatively reproduces the decrease in α-helix content, thereby offering a rationale based on particle curvature. The simulations quantitatively reproduce the charge inversion measured experimentally through the ζ-potential of the AuNPs in the presence of HSA. Finally, we found that AuNPs with adsorbed HSA display lower toxicity and slower cell uptake rates, compared to functionalized systems in the absence of protein. Our study allows examining and explaining the conformational dynamics of blood proteins triggered by NPs and corona formation, thereby opening new avenues toward designing safer NPs for drug delivery and nanomedical applications.

摘要

一旦纳米粒子进入人体,它们通常会与血液蛋白相互作用,而血液蛋白在吸附后会发生结构变化。尽管蛋白质冠形成是一个广泛研究的现象,但吸附在纳米粒子上的蛋白质的结构却知之甚少。我们提出了一个模型来描述人血清白蛋白(HSA)与具有任意涂层的纳米粒子(NPs)之间的相互作用。我们的模型考虑了质子化和非质子化聚合物末端之间的竞争以及 NPs 的曲率。为此,我们探索了表面配体(柠檬酸盐、PEG-OME、PEG-NH2、PEG-COOH 和聚糖)对金纳米粒子(AuNPs)的影响,以及介质 pH 值对血液中最丰富的蛋白质(HSA)结构变化的影响血浆),以及这种变化对细胞毒性和细胞摄取的影响。我们观察到在结合带负电荷的 HSA 时 ζ-电位发生了反直觉的变化,而在各种 pH 值下的圆二色性光谱显示,α-螺旋含量的降低呈现出与表面化学和曲率有关的出乎意料的模式。我们的模型定性地再现了α-螺旋含量的降低,从而为基于粒子曲率的合理性提供了依据。模拟定量再现了通过存在 HSA 时的 AuNPs 的 ζ-电位实验测量到的电荷反转。最后,我们发现与没有蛋白质的功能化系统相比,吸附有 HSA 的 AuNPs 显示出较低的毒性和较慢的细胞摄取率。我们的研究允许检查和解释由 NPs 和冠形成引发的血液蛋白的构象动力学,从而为设计用于药物输送和纳米医学应用的更安全的 NPs 开辟了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验