Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.
Rapid Commun Mass Spectrom. 2020 Jun 15;34(11):e8761. doi: 10.1002/rcm.8761.
Doubly substituted isotope species ("clumped" isotopes) can provide insights into the biogeochemical history of a molecule, including its temperature of formation and/or its (bio)synthetic pathway. Here, we propose a new fluorination method for the measurement of C- C species in C molecules using a conventional isotope ratio mass spectrometer. Target molecules include ethane, ethene and ethanol.
C- C isotope species in C molecules were measured as C F using a conventional isotope ratio mass spectrometer. Ethane and ethene are directly fluorinated to C F . Ethanol is measured after dehydration to ethene and subsequent fluorination of the latter. The method enables the measurement of the Δ C C values normalized against a reference working standard.
The reproducibility of the whole protocol, including chemical modification steps and measurement of C F isotopologues, is better than ±0.14‰ for all the compounds. Ethane from natural gas samples and biologically derived ethanol show a narrow range of Δ C C values, varying from 0.72‰ to 0.90‰. In contrast, synthetic ethanol as well as putative abiotic ethane show Δ C C values significantly different from this range with values of 1.14‰ and 0.25‰, respectively.
The method presented here provides alternative means of measuring C- C species to that using high-resolution mass spectrometry. Preliminary data from natural and synthetic molecules re-emphasizes the potential of C clumped isotope species as a (bio)marker.
双取代同位素物种(“聚集”同位素)可以提供有关分子生物地球化学历史的信息,包括其形成温度和/或其(生物)合成途径。在这里,我们提出了一种使用常规同位素比质谱仪测量 C 分子中 C-C 物种的新氟化方法。目标分子包括乙烷、乙烯和乙醇。
使用常规同位素比质谱仪,将 C 分子中的 C-C 同位素物种作为 C-F 进行测量。乙烷和乙烯直接氟化生成 C-F。乙醇经脱水生成乙烯,然后对后者进行氟化,即可进行测量。该方法可以测量相对于参考工作标准归一化的 ΔC-C 值。
整个方案的重复性,包括化学修饰步骤和 C-F 同位素同量异位素的测量,对于所有化合物都优于±0.14‰。来自天然气样品和生物来源的乙醇的乙烷显示出较窄的 ΔC-C 值范围,从 0.72‰到 0.90‰不等。相比之下,合成乙醇以及假定的非生物乙烷的 ΔC-C 值明显偏离该范围,分别为 1.14‰和 0.25‰。
本文提出的方法为使用高分辨率质谱仪测量 C-C 物种提供了替代方法。来自天然和合成分子的初步数据再次强调了 C 聚集同位素物种作为(生物)标志物的潜力。