Suppr超能文献

采用氟化法对 C- C 簇合同位素进行标准化分析。

Standardization for C- C clumped isotope analysis by the fluorination method.

机构信息

Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Meguro, 152-8551, Japan.

Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Tokyo, Meguro, 152-8550, Japan.

出版信息

Rapid Commun Mass Spectrom. 2021 Jun 15;35(13):e9109. doi: 10.1002/rcm.9109.

Abstract

RATIONALE

The C- C isotopologues of C molecules have recently been measured using a fluorination method. The C compound is first fluorinated into hexafluoroethane (C F ), and its C-isotopologues are subsequently measured using a conventional isotope ratio mass spectrometer. Here, we present an approach for standardizing the fluorination method on an absolute reference scale by using isotopically enriched C F .

METHODS

We prepared physical mixtures of C- C-labeled ethanol and natural ethanol. The enriched ethanol samples were measured using the recently developed fluorination method. Based on the difference between the calculated and measured ∆ C C values, we quantified the extent to which isotopologues were scrambled during dehydration, fluorination, and ionization in the ion source.

RESULTS

The measured ∆ C C value was approximately 20% lower than that expected from the amount of C- C ethanol. The potential scrambling in the ion source was estimated to be 0.5-2%, which is lower than the observed isotopic reordering. Therefore, isotopic reordering may have occurred during either dehydration or fluorination.

CONCLUSIONS

For typical analysis of natural samples, scrambling in the ion source can only change the ∆ C C value by less than 0.04‰, which is lower than the current analytical precision (±0.07‰). Therefore, the observed isotopic reordering may have occurred during the fluorination of ethene through the scrambling of isotopologues of ethene but not in the ion source of the mass spectrometer or during the dehydration of ethanol, given the small amount of C and C molecules. Thus, we obtained the empirical transfer function ∆ C C  = λ × ∆ C C with a λ value of 1.25 ± 0.01 for ethanol/ethene and 1.00 for ethane. Using the empirical transfer function, the developed fluorination method can provide actual differences in ∆ values.

摘要

原理

最近使用氟化方法测量了 C 分子的 C-C 同位素。首先将 C 化合物氟化生成六氟乙烷(C 2 F 6 ),然后使用传统的同位素比质谱仪测量其 C-同位素。在这里,我们提出了一种使用同位素富集的 C 2 F 6 对氟化方法进行标准化的方法,以达到绝对参考标准。

方法

我们制备了 C- C 标记乙醇和天然乙醇的物理混合物。使用最近开发的氟化方法测量富集乙醇样品。基于计算和测量的 ∆ C C 值之间的差异,我们量化了在离子源中脱水、氟化和离子化过程中同位素混合物的混乱程度。

结果

测量的 ∆ C C 值比预期的 C- C 乙醇含量低约 20%。离子源中的潜在混乱程度估计为 0.5-2%,低于观察到的同位素重排。因此,同位素重排可能发生在脱水或氟化过程中。

结论

对于典型的天然样品分析,离子源中的混乱只能使 ∆ C C 值变化小于 0.04‰,低于当前的分析精度(±0.07‰)。因此,鉴于 C 和 C 分子的含量很少,观察到的同位素重排可能发生在乙烯通过乙烯同位素混合物的混乱的氟化过程中,而不是在质谱仪的离子源中,也不是在乙醇的脱水过程中。因此,我们获得了经验转移函数 ∆ C C  = λ × ∆ C C,对于乙醇/乙烯,λ 值为 1.25 ± 0.01,对于乙烷,λ 值为 1.00。使用经验转移函数,开发的氟化方法可以提供实际的 ∆ 值差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验