Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
Mol Brain. 2020 Feb 19;13(1):18. doi: 10.1186/s13041-020-0561-1.
Spinal bulbar muscular atrophy (SBMA) is an adult-onset, slowly progressive motor neuron disease caused by abnormal CAG repeat expansion in the androgen receptor (AR) gene. Although ligand (testosterone)-dependent mutant AR aggregation has been shown to play important roles in motor neuronal degeneration by the analyses of transgenic mice models and in vitro cell culture models, the underlying disease mechanisms remain to be fully elucidated because of the discrepancy between model mice and SBMA patients. Thus, novel human disease models that recapitulate SBMA patients' pathology more accurately are required for more precise pathophysiological analysis and the development of novel therapeutics. Here, we established disease specific iPSCs from four SBMA patients, and differentiated them into spinal motor neurons. To investigate motor neuron specific pathology, we purified iPSC-derived motor neurons using flow cytometry and cell sorting based on the motor neuron specific reporter, HB9::Venus, and proceeded to the genome-wide transcriptome analysis by RNA sequences. The results revealed the involvement of the pathology associated with synapses, epigenetics, and endoplasmic reticulum (ER) in SBMA. Notably, we demonstrated the involvement of the neuromuscular synapse via significant upregulation of Synaptotagmin, R-Spondin2 (RSPO2), and WNT ligands in motor neurons derived from SBMA patients, which are known to be associated with neuromuscular junction (NMJ) formation and acetylcholine receptor (AChR) clustering. These aberrant gene expression in neuromuscular synapses might represent a novel therapeutic target for SBMA.
脊髓延髓肌肉萎缩症(SBMA)是一种成人发病、进行性缓慢的运动神经元疾病,由雄激素受体(AR)基因中异常的 CAG 重复扩展引起。尽管通过转基因小鼠模型和体外细胞培养模型的分析表明,配体(睾酮)依赖性突变型 AR 聚集在运动神经元变性中起重要作用,但由于模型小鼠与 SBMA 患者之间存在差异,因此疾病机制仍未完全阐明。因此,需要更准确地再现 SBMA 患者病理学的新型人类疾病模型,以便更精确地进行病理生理学分析和开发新型治疗方法。在这里,我们从四名 SBMA 患者中建立了疾病特异性的 iPSCs,并将其分化为脊髓运动神经元。为了研究运动神经元特异性病理学,我们使用基于运动神经元特异性报告基因 HB9::Venus 的流式细胞术和细胞分选对 iPSC 衍生的运动神经元进行了纯化,并通过 RNA 序列进行了全基因组转录组分析。结果表明,与突触、表观遗传学和内质网(ER)相关的病理学与 SBMA 有关。值得注意的是,我们通过源自 SBMA 患者的运动神经元中突触素、R-Spondin2(RSPO2)和 WNT 配体的显著上调证明了神经肌肉突触的参与,这些基因已知与神经肌肉接头(NMJ)形成和乙酰胆碱受体(AChR)簇集有关。这些神经肌肉突触中的异常基因表达可能代表 SBMA 的一种新的治疗靶点。