Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
J Biol Chem. 2013 Mar 22;288(12):8043-8052. doi: 10.1074/jbc.M112.408211. Epub 2013 Jan 30.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.
脊髓延髓肌肉萎缩症(SBMA)是一种 X 连锁运动神经元疾病,由雄激素受体(AR)基因中的 CAG 重复扩展引起。突变型 AR 蛋白的配体依赖性核积累是 SBMA 发病机制的一个关键特征。AR 过表达动物中已建立了 SBMA 模型,但聚谷氨酰胺(polyQ)扩展如何导致神经退行性变尚不清楚。诱导多能干细胞(iPSCs)是一种新技术,可用于模拟人类疾病、研究发病机制和开发新型药物。我们建立了 SBMA 患者来源的 iPSCs,研究了它们的细胞生化特征,发现 SBMA-iPSCs 可分化为运动神经元。在 iPSCs 中,SBMA-iPSCs 的 AR 基因中的 CAG 重复数和另一种多聚 Q 疾病齿状核红核苍白球路易体萎缩症(DRPLA)中的 atrophin-1 基因中的 CAG 重复数在重编程、长期传代和分化过程中保持不变,表明 iPSCs 维持过程中与 polyQ 疾病相关的 CAG 重复是稳定的。神经元分化和 AR 配体二氢睾酮处理可上调 AR 表达水平。滤过阻滞试验表明,与神经对照组 iPSCs 相比,来自 SBMA-iPSCs 的神经元在二氢睾酮处理后 AR 的聚集显著增加,容易再现 SBMA-iPSCs 中突变型 AR 的病理特征。在 iPSCs 和成纤维细胞中未观察到这种现象,从而表现出这种疾病的神经元优势表型。此外,热休克蛋白 90 抑制剂 17-烯丙基氨基格尔德霉素可显著降低来自 SBMA-iPSCs 的神经元中聚集的 AR 水平,表明候选药物的发现和验证具有潜力。我们发现 SBMA-iPSCs 具有疾病特异性的生化特征,因此不仅可以为 SBMA 研究,还可以为其他多聚谷氨酰胺疾病的研究开辟新途径。