Suppr超能文献

利用 iPSC 平台探索运动神经元疾病。

Exploring Motor Neuron Diseases Using iPSC Platforms.

机构信息

Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Stem Cells. 2022 Mar 3;40(1):2-13. doi: 10.1093/stmcls/sxab006.

Abstract

The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.

摘要

运动神经元的退化是运动神经元疾病(MNDs)的病理学标志,但新出现的证据表明,神经元易损性远远超出了这种细胞亚型。在临床上评估运动功能的能力仅限于体格检查、电生理测量以及基于组织或神经影像学的技术,这些技术缺乏分辨率,无法准确评估疾病进展过程中的神经元功能障碍。脊髓性肌萎缩症(SMA)、脊髓和延髓肌萎缩症(SBMA)、遗传性痉挛性截瘫(HSP)和肌萎缩侧索硬化症(ALS)都是 MNDs,其临床结局具有破坏性,会极大地加重疾病负担,因为患者不再能够进行正常的日常生活活动。准确评估运动神经元功能障碍的原因和进展的迫切需要,特别是在这些疾病的早期阶段,这促使人们使用人诱导多能干细胞衍生的运动神经元(hiPSC-MN)来研究疾病发病机制的神经生物学机制,并为治疗发现和测试生成平台。随着我们对 MNDs 的理解不断加深,我们也越来越需要开发更复杂的体外模型,包括 hiPSC-MN 与相关非神经元细胞在二维以及三维类器官和球体系统中的共培养。这些更复杂的 hiPSC 衍生培养系统已经引入了新技术,包括微流控、多电极阵列和机器学习,这些技术为这些新兴模型系统的功能相关性提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9555/9199844/5a30c4404642/sxab006_fig3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验